Order:
  1.  66
    Derivation of the Dirac Equation by Conformal Differential Geometry.Enrico Santamato & Francesco De Martini - 2013 - Foundations of Physics 43 (5):631-641.
    A rigorous ab initio derivation of the (square of) Dirac’s equation for a particle with spin is presented. The Lagrangian of the classical relativistic spherical top is modified so to render it invariant with respect conformal changes of the metric of the top configuration space. The conformal invariance is achieved by replacing the particle mass in the Lagrangian with the conformal Weyl scalar curvature. The Hamilton-Jacobi equation for the particle is found to be linearized, exactly and in closed form, by (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  2.  45
    Proof of the Spin–Statistics Theorem.Enrico Santamato & Francesco De Martini - 2015 - Foundations of Physics 45 (7):858-873.
    The traditional standard quantum mechanics theory is unable to solve the spin–statistics problem, i.e. to justify the utterly important “Pauli Exclusion Principle”. A complete and straightforward solution of the spin–statistics problem is presented on the basis of the “conformal quantum geometrodynamics” theory. This theory provides a Weyl-gauge invariant formulation of the standard quantum mechanics and reproduces successfully all relevant quantum processes including the formulation of Dirac’s or Schrödinger’s equation, of Heisenberg’s uncertainty relations and of the nonlocal EPR correlations. When the (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  3.  20
    Proof of the Spin Statistics Connection 2: Relativistic Theory.Enrico Santamato & Francesco De Martini - 2017 - Foundations of Physics 47 (12):1609-1625.
    The traditional standard theory of quantum mechanics is unable to solve the spin–statistics problem, i.e. to justify the utterly important “Pauli Exclusion Principle” but by the adoption of the complex standard relativistic quantum field theory. In a recent paper :858–873, 2015) we presented a proof of the spin–statistics problem in the nonrelativistic approximation on the basis of the “Conformal Quantum Geometrodynamics”. In the present paper, by the same theory the proof of the spin–statistics theorem is extended to the relativistic domain (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark