Results for 'E. G. K. L��pez-Escobar'

1000+ found
Order:
  1.  15
    E. G. K. Lopez-Escobar. On a Theorem of J. I. Malitz. Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques Et Physiques, Vol. 15 , Pp. 739–743. [REVIEW]Martin Helling - 1970 - Journal of Symbolic Logic 35 (4):586-586.
  2.  12
    E. G. K. Lopez-Escobar. An Interpolation Theorem for Denumerably Long Formulas. Fundamenta Mathematicae, Vol. 57 No. 3 , Pp. 253–257. - E. G. K. Lopez-Escobar. Universal Formulas in the Infinitary Language Lαβ. Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques Et Physiques, Vol. 13 , Pp. 383–388. [REVIEW]Erwin Engeler - 1969 - Journal of Symbolic Logic 34 (2):301-302.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  3.  7
    Review: E. G. K. Lopez-Escobar, An Interpolation Theorem for Denumerably Long Formulas; E. G. K. Lopez-Escobar, Universal Formulas in the Infinitary Language $L_{Alpha Beta}$. [REVIEW]Erwin Engeler - 1969 - Journal of Symbolic Logic 34 (2):301-302.
  4.  11
    Lopez-Escobar E. G. K.. A Non-Interpolation Theorem. English with Russian Summary. Bulletin de l'Académic Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques Et Physiques, Vol. 17 , Pp. 109–112, V. [REVIEW]H. B. Enderton - 1975 - Journal of Symbolic Logic 40 (3):457-458.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  5.  11
    Review: Jon Barwise, Kenneth Kunen, Hanf Numbers for Fragments of $L_{Inftyomega}$. [REVIEW]E. G. K. Lopez-Escobar - 1984 - Journal of Symbolic Logic 49 (1):315-315.
  6.  4
    Barwise Jon and Kunen Kenneth. Hanf Numbers for Fragments of L∞Ω. Israel Journal of Mathematics, Vol. 10 , Pp. 306–320.E. G. K. López-Escobar - 1984 - Journal of Symbolic Logic 49 (1):315.
  7.  9
    Review: E. G. K. Lopez-Escobar, A Complete, Infinitary Axiomatization of Weak Second-Order Logic. [REVIEW]Wolfram Schwabhauser - 1970 - Journal of Symbolic Logic 35 (3):467-467.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  19
    E. G. K. Lopez-Escobar. A Complete, Infinitary Axiomatization of Weak Second-Order Logic. Fundamenta Mathematicae, Vol. 61 , Pp. 93–103. [REVIEW]Wolfram Schwabhäuser - 1970 - Journal of Symbolic Logic 35 (3):467.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9.  10
    Review: E. G. K. Lopez-Escobar, On a Theorem of J. I. Malitz. [REVIEW]Martin Helling - 1970 - Journal of Symbolic Logic 35 (4):586-586.
  10.  20
    E. G. K. Lopez-Escobar. On Defining Well-Orderings. Fundamenta Mathematicae, Vol. 59 , Pp. 13–21. - E. G. K. Lopez-Escobar. An Addition to “On Defining Well-Orderings.“Fundamenta Mathematicae, Vol. 59 , Pp. 299–300. [REVIEW]Jerome Malitz - 1968 - Journal of Symbolic Logic 33 (1):123.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  11. Review: E. G. K. Lopez-Escobar, On Defining Well-Orderings; E. G. K. Lopez-Escobar, An Addition to "On Defining Well-Orderings.". [REVIEW]Jerome Malitz - 1968 - Journal of Symbolic Logic 33 (1):123-123.
  12.  18
    An Interpolation Theorem for Denumerably Long Formulas.E. G. K. Lopez-Escobar - 1969 - Journal of Symbolic Logic 34 (2):301-302.
  13.  10
    Čudnovskiǐ G. V.. Some Results in the Theory of Infinitely Long Expressions. English Translation of XXXVII 215 by Mendelson E.. Soviet Mathematics, Vol. 9 No. 2 , Pp. 556–559. [REVIEW]E. G. K. López-Escobar - 1972 - Journal of Symbolic Logic 37 (1):202-203.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  14.  8
    Review: E. G. K. Lopez-Escobar, A Non-Interpolation Theorem. [REVIEW]H. B. Enderton - 1975 - Journal of Symbolic Logic 40 (3):457-458.
  15.  12
    Logic: Techniques of Formal Reasoning.E. G. K. Lopez-Escobar - 1967 - Philosophical Review 76 (2):252.
  16.  5
    Generalized Interpolation and Definability.E. G. K. López-Escobar - 1974 - Journal of Symbolic Logic 39 (2):337-338.
    Direct download  
     
    Export citation  
     
    Bookmark  
  17.  22
    On the Interpolation Theorem for the Logic of Constant Domains.E. G. K. López-Escobar - 1981 - Journal of Symbolic Logic 46 (1):87-88.
  18.  22
    W. W. Tait. Infinitely Long Terms of Transfinite Type. Formal Systems and Recursive Functions, Proceedings of the Eighth Logic Colloquium, Oxford, July 1963, Edited by J. N. Crossley and M. A. E. Dummett, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Company, Amsterdam 1965, Pp. 176–185. [REVIEW]E. G. K. LóPez-Escobar - 1975 - Journal of Symbolic Logic 40 (4):623-624.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  19.  6
    Review: G. V. Cudnovskii, Some Results in the Theory of Infinitely Long Expressions. [REVIEW]E. G. K. Lopez-Escobar - 1972 - Journal of Symbolic Logic 37 (1):202-203.
  20.  27
    Constructions and Negationless Logic.E. G. K. López-Escobar - 1972 - Studia Logica 30 (1):7 - 22.
  21.  8
    An Outline of Mathematical Logic. Fundamental Results and Notions Explained with All Details.E. G. K. López-Escobar - 1983 - Journal of Symbolic Logic 48 (1):220-222.
    Direct download  
     
    Export citation  
     
    Bookmark  
  22.  12
    Review: W. W. Tait, J. N. Crossley, M. A. E. Dummett, Infinitely Long Terms of Transfinite Type. [REVIEW]E. G. K. Lopez-Escobar - 1975 - Journal of Symbolic Logic 40 (4):623-624.
  23.  10
    A Second Paper "on the Interpolation Theorem for the Logic of Constant Domains".E. G. K. López-Escobar - 1983 - Journal of Symbolic Logic 48 (3):595-599.
  24.  27
    Jon Barwise. Infinitary Logic and Admissible Sets. The Journal of Symbolic Logic, Vol. 34 , Pp. 226–252.E. G. K. Lopez-Escobar - 1971 - Journal of Symbolic Logic 36 (1):156-157.
  25.  53
    Konstrukcje a Logika Beznegacyjna.E. G. K. López-Escobar - 1972 - Studia Logica 30 (1):20-20.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  26.  20
    Michael Morley. Omitting Classes of Elements. The Theory of Models, Proceedings of the 1963 International Symposium at Berkeley, Edited by J. W. Addison, Leon Henkin, and Alfred Tarski, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Company, Amsterdam1965, Pp. 265–273. [REVIEW]E. G. K. Lopez-Escobar - 1968 - Journal of Symbolic Logic 33 (2):286-287.
  27.  18
    Kenneth Kunen. Implicit Definability and Infinitary Languages. The Journal of Symbolic Logic, Vol. 33 , Pp. 446–451.E. G. K. Lopez-Escobar - 1970 - Journal of Symbolic Logic 35 (2):341-342.
  28. Intuitionistic Equivalence.E. G. K. Lopez-Escobar & Francisco Miraglia - 1999 - Manuscrito 22 (2):205.
     
    Export citation  
     
    Bookmark  
  29. Review: Michael Morley, Omitting Classes of Elements. [REVIEW]E. G. K. Lopez-Escobar - 1968 - Journal of Symbolic Logic 33 (2):286-287.
  30. Variations on A System Of Gentzen.E. G. K. López-Escobar - 1981 - Mathematical Logic Quarterly 27 (25‐30):385-389.
    Direct download  
     
    Export citation  
     
    Bookmark  
  31.  16
    Wilbur John WalkoeJr., Finite Partially-Ordered Quantification. The Journal of Symbolic Logic, Vol. 35 , Pp. 535–555.E. G. K. López-Escobar - 1975 - Journal of Symbolic Logic 40 (2):239-240.
  32.  15
    David W. Kueker. Generalized Interpolation and Definability. Annals of Mathematical Logic, Vol. 1 No. 4 , Pp. 423–468.E. G. K. López-Escobar - 1974 - Journal of Symbolic Logic 39 (2):337-338.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  33.  15
    Andrzej Grzegorczyk. An Outline of Mathematical Logic. Fundamental Results and Notions Explained with All Details. English Translation by Olgierd Wojtasiewicz and Wacław Zawadowski of the Second Edition of Zarys Logiki Matematycznej. Synthese Library, Vol. 70. D. Reidel Publishing Company, Dordrecht and Boston, and PWN—Polish Scientific Publishers, Warsaw, 1974, X + 596 Pp. [REVIEW]E. G. K. López-Escobar - 1983 - Journal of Symbolic Logic 48 (1):220-222.
  34. Implicational Logics in Natural Deduction Systems.E. G. K. López-Escobar - 1982 - Journal of Symbolic Logic 47 (1):184-186.
  35. König's Lemma, the Ω-Rule and Primitive Recursive Arithmetic.E. G. K. López-Escobar - 1985 - Archive for Mathematical Logic 25 (1):67-74.
     
    Export citation  
     
    Bookmark  
  36.  18
    Variations on A System Of Gentzen.E. G. K. López-Escobar - 1981 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 27 (25-30):385-389.
    Direct download  
     
    Export citation  
     
    Bookmark  
  37.  20
    Review: H. Jerome Keisler, Model Theory for Infinitary Logic. Logic with Countable Conjunctions and Finite Quantifiers. [REVIEW]E. G. K. Lopez-Escobar - 1973 - Journal of Symbolic Logic 38 (3):522-523.
  38.  24
    Remarks on an Infinitary Language with Constructive Formulas.E. G. K. Lopez-Escobar - 1967 - Journal of Symbolic Logic 32 (3):305-318.
  39.  14
    Engeler Erwin. Zur Beweistheorie von Sprachen mit unendlich langen Formeln. Zeitschrift für mathematische Logik und Grundlagen der Mathematik, vol. 7 , pp. 213–218. [REVIEW]E. G. K. Lopez-Escobar - 1971 - Journal of Symbolic Logic 36 (4):685-685.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark  
  40.  14
    Review: David W. Kueker, Generalized Interpolation and Definability. [REVIEW]E. G. K. Lopez-Escobar - 1974 - Journal of Symbolic Logic 39 (2):337-338.
  41.  12
    A Complete, Infinitary Axiomatization of Weak Second-Order Logic.E. G. K. Lopez-Escobar - 1970 - Journal of Symbolic Logic 35 (3):467-467.
  42.  12
    On a Theorem of J. I. Malitz.E. G. K. Lopez-Escobar - 1970 - Journal of Symbolic Logic 35 (4):586-586.
  43.  19
    Remarks on the Church-Rosser Property.E. G. K. López-Escobar - 1990 - Journal of Symbolic Logic 55 (1):106-112.
    A reduction algebra is defined as a set with a collection of partial unary functions (called reduction operators). Motivated by the lambda calculus, the Church-Rosser property is defined for a reduction algebra and a characterization is given for those reduction algebras satisfying CRP and having a measure respecting the reductions. The characterization is used to give (with 20/20 hindsight) a more direct proof of the strong normalization theorem for the impredicative second order intuitionistic propositional calculus.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  44.  13
    Review: Jon Barwise, Infinitary Logic and Admissible Sets. [REVIEW]E. G. K. Lopez-Escobar - 1971 - Journal of Symbolic Logic 36 (1):156-157.
  45.  5
    Richard A. Platek. Eliminating the Continuum Hypothesis. The Journal of Symbolic Logic, Vol. 34 , Pp. 219–225.E. G. K. Lopez-Escobar - 1971 - Journal of Symbolic Logic 36 (1):166.
  46.  13
    Circumscription Within Monotonic Inferences.E. G. K. López-Escobar - 1988 - Journal of Symbolic Logic 53 (3):888-904.
    A conservative extension of first order logic, suitable for circumscriptive inference, is introduced.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark  
  47.  8
    Review: Andrzej Grzegorczyk, Olgierd Wojtasiewicz, Waclaw Zawadowski, An Outline of Mathematical Logic. Fundamental Results and Notions Explained with All Details. [REVIEW]E. G. K. Lopez-Escobar - 1983 - Journal of Symbolic Logic 48 (1):220-222.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  48.  7
    Keisler H. Jerome. Model Theory for Infinitary Logic. Logic with Countable Conjunctions and Finite Quantifiers. Studies in Logic and the Foundations of Mathematics, Vol. 62, North-Holland Publishing Company, Amsterdam and London 1971, X + 208 Pp. [REVIEW]E. G. K. López-Escobar - 1973 - Journal of Symbolic Logic 38 (3):522-523.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  49.  4
    Review: Richard A. Platek, Eliminating the Continuum Hypothesis. [REVIEW]E. G. K. Lopez-Escobar - 1971 - Journal of Symbolic Logic 36 (1):166-166.
  50.  4
    Review: Wilbur John Walkoe, Finite Partially-Ordered Quantification. [REVIEW]E. G. K. Lopez-Escobar - 1975 - Journal of Symbolic Logic 40 (2):239-240.
1 — 50 / 1000