People are adept at inferring novel causal relations, even from only a few observations. Prior knowledge about the probability of encountering causal relations of various types and the nature of the mechanisms relating causes and effects plays a crucial role in these inferences. We test a formal account of how this knowledge can be used and acquired, based on analyzing causal induction as Bayesian inference. Five studies explored the predictions of this account with adults and 4-year-olds, using tasks in which (...) participants learned about the causal properties of a set of objects. The studies varied the two factors that our Bayesian approach predicted should be relevant to causal induction: the prior probability with which causal relations exist, and the assumption of a deterministic or a probabilistic relation between cause and effect. Adults’ judgments (Experiments 1, 2, and 4) were in close correspondence with the quantitative predictions of the model, and children’s judgments (Experiments 3 and 5) agreed qualitatively with this account. (shrink)
We outline a cognitive and computational account of causal learning in children. We propose that children employ specialized cognitive systems that allow them to recover an accurate “causal map” of the world: an abstract, coherent representation of the causal relations among events. This kind of knowledge can be perspicuously represented by the formalism of directed graphical causal models, or “Bayes nets”. Human causal learning and inference may involve computations similar to those for learnig causal Bayes nets and for predicting with (...) them. Preliminary experimental results suggest that 2- to 4-year-old children spontaneously construct new causal maps and that their learning is consistent with the Bayes-Net formalism. (shrink)
Two facets of diagnostic reasoning related to scientific thinking are recognizing the difference between confounded and unconfounded evidence and selecting appropriate interventions that could provide learners the evidence necessary to make an appropriate causal conclusion. The present study investigates both these abilities in 3- to 6-year-old children. We found both competence and developmental progress in the capacity to recognize that evidence is confounded. Similarly, children performed above chance in some tasks testing for the selection of a controlled test of a (...) hypothesis. However, these capacities were unrelated, suggesting that preschoolers’ nascent understanding of the control-of-variables strategy may not be driven by a metacognitive understanding that confounded evidence does not support a unique causal conclusion, and requires further investigation. (shrink)
In museum settings, caregivers support children's learning as they explore and interact with exhibits. Museums have developed exhibit design and facilitation strategies for promoting families' exploration and inquiry, but these strategies have rarely been contrasted. The goal of the current study was to investigate how prompts offered through staff facilitation vs. labels printed on exhibit components affected how family groups explored a circuit blocks exhibit, particularly whether children set and worked toward their own goals, and how caregivers were involved in (...) children's play. We compared whether children, their caregivers, or both set goals as they played together, and the actions they each took to connect the circuits. We found little difference in how families set goals between the two conditions, but did find significant differences in caregivers' actions, with caregivers in the facilitation condition making fewer actions to connect circuits while using the exhibit, compared to caregivers in the exhibit labels condition. The findings suggest that facilitated and written prompts shape the quality of caregiver-child interactions in distinct ways. (shrink)