Order:
  1. Bohrification of operator algebras and quantum logic.Chris Heunen, Nicolaas P. Landsman & Bas Spitters - 2012 - Synthese 186 (3):719 - 752.
    Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hubert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by their nondistributivity and by various other problems. We show that a possible resolution of these difficulties, suggested by the ideas of Bohr, emerges if instead of single projections one considers elementary propositions to be families (...)
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  2. Bohrification of operator algebras and quantum logic.Chris Heunen, Nicolaas P. Landsman & Bas Spitters - 2012 - Synthese 186 (3):719-752.
    Following Birkhoff and von Neumann, quantum logic has traditionally been based on the lattice of closed linear subspaces of some Hilbert space, or, more generally, on the lattice of projections in a von Neumann algebra A. Unfortunately, the logical interpretation of these lattices is impaired by their nondistributivity and by various other problems. We show that a possible resolution of these difficulties, suggested by the ideas of Bohr, emerges if instead of single projections one considers elementary propositions to be families (...)
     
    Export citation  
     
    Bookmark   4 citations  
  3.  96
    Intuitionistic Quantum Logic of an n-level System.Martijn Caspers, Chris Heunen, Nicolaas P. Landsman & Bas Spitters - 2009 - Foundations of Physics 39 (7):731-759.
    A decade ago, Isham and Butterfield proposed a topos-theoretic approach to quantum mechanics, which meanwhile has been extended by Döring and Isham so as to provide a new mathematical foundation for all of physics. Last year, three of the present authors redeveloped and refined these ideas by combining the C*-algebraic approach to quantum theory with the so-called internal language of topos theory (Heunen et al. in arXiv:0709.4364). The goal of the present paper is to illustrate our abstract setup through the (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  4. The principle of general tovariance.Chris Heunen, Klaas Landsman & Bas Spitters - unknown
    We tentatively propose two guiding principles for the construction of theories of physics, which should be satisfied by a possible future theory of quantum gravity. These principles are inspired by those that led Einstein to his theory of general relativity, viz. his principle of general covariance and his equivalence principle, as well as by the two mysterious dogmas of Bohr's interpretation of quantum mechanics, i.e. his doctrine of classical concepts and his principle of complementarity. An appropriate mathematical language for combining (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  5.  5
    Compact Inverse Categories.Robin Cockett & Chris Heunen - 2023 - In Alessandra Palmigiano & Mehrnoosh Sadrzadeh (eds.), Samson Abramsky on Logic and Structure in Computer Science and Beyond. Springer Verlag. pp. 813-832.
    We prove a structure theorem for compact inverse categories. The Ehresmann-Schein-Nambooripad theorem gives a structure theorem for inverse monoids: they are inductive groupoids. A particularly nice case due to Clifford is that commutative inverse monoids become semilattices of abelian groups. It has also been categorified by Hoehnke and DeWolf-Pronk to a structure theorem for inverse categories as locally complete inductive groupoids. We show that in the case of compact inverse categories, this takes the particularly nice form of a semilattice of (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark  
  6.  45
    Complementarity in Categorical Quantum Mechanics.Chris Heunen - 2012 - Foundations of Physics 42 (7):856-873.
    We relate notions of complementarity in three layers of quantum mechanics: (i) von Neumann algebras, (ii) Hilbert spaces, and (iii) orthomodular lattices. Taking a more general categorical perspective of which the above are instances, we consider dagger monoidal kernel categories for (ii), so that (i) become (sub)endohomsets and (iii) become subobject lattices. By developing a ‘point-free’ definition of copyability we link (i) commutative von Neumann subalgebras, (ii) classical structures, and (iii) Boolean subalgebras.
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark