Order:
  1.  13
    Δ20-Categoricity in Boolean Algebras and Linear Orderings.Charles F. D. McCoy - 2003 - Annals of Pure and Applied Logic 119 (1-3):85-120.
    We characterize Δ20-categoricity in Boolean algebras and linear orderings under some extra effectiveness conditions. We begin with a study of the relativized notion in these structures.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  2.  6
    Finite Computable Dimension Does Not Relativize.Charles F. D. McCoy - 2002 - Archive for Mathematical Logic 41 (4):309-320.
    In many classes of structures, each computable structure has computable dimension 1 or $\omega$. Nevertheless, Goncharov showed that for each $n < \omega$, there exists a computable structure with computable dimension $n$. In this paper we show that, under one natural definition of relativized computable dimension, no computable structure has finite relativized computable dimension greater than 1.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  3. On the isomorphism problem for some classes of computable algebraic structures.Valentina S. Harizanov, Steffen Lempp, Charles F. D. McCoy, Andrei S. Morozov & Reed Solomon - 2022 - Archive for Mathematical Logic 61 (5):813-825.
    We establish that the isomorphism problem for the classes of computable nilpotent rings, distributive lattices, nilpotent groups, and nilpotent semigroups is \-complete, which is as complicated as possible. The method we use is based on uniform effective interpretations of computable binary relations into computable structures from the corresponding algebraic classes.
    No categories
    Direct download (3 more)  
    Translate
     
     
    Export citation  
     
    Bookmark