Order:
Disambiguations
Andrei Rodin [21]Andrei V. Rodin [1]
See also
Andrei Rodin
Russian Academy of Sciences
  1.  22
    Identity and Categorification.Andrei Rodin - 2007 - Philosophia Scientiae 11 (2):27-65.
    Dans cet article je présente une analyse critique de l’approche habituelle de l’identité mathématique qui a son origine dans les travaux de Frege et Russell, en faisant un contraste avec les approches alternatives de Platon et Geach. Je pose ensuite ce problème dans un cadre de la théorie des catégories et montre que la notion d’identité ne peut pas être « internalisée » par les moyens catégoriques standards. Enfin, je présente deux approches de l’identité mathématique plus spécifiques: une avec la (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  2. Categories without Structures.Andrei Rodin - 2011 - Philosophia Mathematica 19 (1):20-46.
    The popular view according to which category theory provides a support for mathematical structuralism is erroneous. Category-theoretic foundations of mathematics require a different philosophy of mathematics. While structural mathematics studies ‘invariant form’ (Awodey) categorical mathematics studies covariant and contravariant transformations which, generally, have no invariants. In this paper I develop a non-structuralist interpretation of categorical mathematics.
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  3. How mathematical concepts get their bodies.Andrei Rodin - 2010 - Topoi 29 (1):53-60.
    When the traditional distinction between a mathematical concept and a mathematical intuition is tested against examples taken from the real history of mathematics one can observe the following interesting phenomena. First, there are multiple examples where concepts and intuitions do not well fit together; some of these examples can be described as “poorly conceptualised intuitions” while some others can be described as “poorly intuited concepts”. Second, the historical development of mathematics involves two kinds of corresponding processes: poorly conceptualised intuitions are (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  4.  1
    Identity and Categorification.Andrei Rodin - 2007 - Philosophia Scientiae 11:27-65.
    Dans cet article je présente une analyse critique de l’approche habituelle de l’identité mathématique qui a son origine dans les travaux de Frege et Russell, en faisant un contraste avec les approches alternatives de Platon et Geach. Je pose ensuite ce problème dans un cadre de la théorie des catégories et montre que la notion d’identité ne peut pas être « internalisée » par les moyens catégoriques standards. Enfin, je présente deux approches de l’identité mathématique plus spécifiques: une avec la (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  5. Environmental Security and Just Causes for War.Juha Räikkä & Andrei Rodin - 2015 - Almanac: Discourses of Ethics 10 (1):47-54.
    This article asks whether a country that suffers from serious environmental problems caused by another country could have a just cause for a defensive war? Danish philosopher Kasper Lippert-Rasmussen has argued that under certain conditions extreme poverty may give a just cause for a country to defensive war, if that poverty is caused by other countries. This raises the question whether the victims of environmental damages could also have a similar right to self-defense. Although the article concerns justice of war, (...)
    Direct download  
     
    Export citation  
     
    Bookmark  
  6.  79
    Elements of Categorical Logic: Fifty Years Later. [REVIEW]Valeria de Paiva & Andrei Rodin - 2013 - Logica Universalis 7 (3):265-273.
  7.  43
    Category Theory and Mathematical Structuralism.Andrei Rodin - 2008 - Proceedings of the Xxii World Congress of Philosophy 41:37-40.
    Category theory doesn't support Mathematical Structuralism but suggests a new philosophical view on mathematics, which differs both from Structuralism and from traditional Substantialism about mathematical objects. While Structuralism implies thinking of mathematical objects up to isomorphism the new categorical view implies thinking up to general morphism.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark  
  8.  6
    Axiomatic Method in Contemporary Science and Technology.Sergei Kovalyov & Andrei Rodin - 2016 - Epistemology and Philosophy of Science 47 (1):153-169.
    In 1900 David Hilbert announced his famous list of then-opened mathematical problems; the problem number 6 in this list is axiomatization of physical theories. Since then a lot of systematic efforts have been invested into solving this problem. However the results of these efforts turned to be less successful than the early enthusiasts of axiomatic method expected. The existing axiomatizations of physical and biological theories provide a valuable logical analysis of these theories but they do not constitute anything like their (...)
    No categories
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark  
  9.  22
    The vessels and the glue: Space, time, and causation.Andrei Rodin - 2004 - Behavioral and Brain Sciences 27 (5):633-634.
    In addition to the “universal glue,” which is the local mechanical causation, the standard explanatory scheme of classical science presumes two “universal vessels,” which are global space and time. I call this outdated metaphysical setting “black-and-white” because it allows for only two principal scales. A prospective metaphysics able to bind existing sciences together needs to be “colored,” that is, allow for scale relativity and diversification by domain.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   1 citation