This paper studies a propositional logic which is obtained by interpreting implication as formal provability. It is also the logic of finite irreflexive Kripke Models.A Kripke Model completeness theorem is given and several completeness theorems for interpretations into Provability Logic and Peano Arithmetic.
In this paper we examine various requirements on the formalisation choices under which self-reference can be adequately formalised in arithmetic. In particular, we study self-referential numberings, which immediately provide a strong notion of self-reference even for expressively weak languages. The results of this paper suggest that the question whether truly self-referential reasoning can be formalised in arithmetic is more sensitive to the underlying coding apparatus than usually believed. As a case study, we show how this sensitivity affects the formal study (...) of certain principles of self-referential truth. (shrink)
In this paper we study the termination behavior of Russell’s description elimination rewrite system. We discuss certain claims made by Kripke (2005) in his paper concerning the possible nontermination of elimination of descriptions.
In this paper we study proofs of some general forms of the Second Incompleteness Theorem. These forms conform to the Feferman format, where the proof predicate is fixed and the representation of the set of axioms varies. We extend the Feferman framework in one important point: we allow the interpretation of number theory to vary.
In his paper "Undecidability without arithmetization," Andrzej Grzegorczyk introduces a theory of concatenation $\mathsf{TC}$. We show that pairing is not definable in $\mathsf{TC}$. We determine a reasonable extension of $\mathsf{TC}$ that is sequential, that is, has a good sequence coding.
In this paper, we characterize the strength of the predicative Frege hierarchy, , introduced by John Burgess in his book [J. Burgess, Fixing frege, in: Princeton Monographs in Philosophy, Princeton University Press, Princeton, 2005]. We show that and are mutually interpretable. It follows that is mutually interpretable with Q. This fact was proved earlier by Mihai Ganea in [M. Ganea, Burgess’ PV is Robinson’s Q, The Journal of Symbolic Logic 72 619–624] using a different proof. Another consequence of the our (...) main result is that is mutually interpretable with Kalmar Arithmetic . The fact that interprets EA was proved earlier by Burgess. We provide a different proof. Each of the theories is finitely axiomatizable. Our main result implies that the whole hierarchy taken together, , is not finitely axiomatizable. What is more: no theory that is mutually locally interpretable with is finitely axiomatizable. (shrink)
In this paper we study the idea of theories with containers, like sets, pairs, sequences. We provide a modest framework to study such theories. We prove two concrete results. First, we show that first-order theories of finite signature that have functional non-surjective ordered pairing are definitionally equivalent to extensions in the same language of the basic theory of non-surjective ordered pairing. Second, we show that a first-order theory of finite signature is sequential (is a theory of sequences) iff it is (...) definitionally equivalent to an extension in the same language of a system of weak set theory called WS. (shrink)
In this paper we show how to interpret Robinson’s arithmetic Q and the theory R of Tarski, Mostowski, and Robinson as theories of cardinals in very weak theories of relations over a domain.
In this paper I give a characterization of the closed fragment of the provability logic of $I \triangle_0 + \mathrm{EXP}$ with a propositional constant for $\mathrm{EXP}$. In three appendices many details on arithmetization are provided.
We show that a consistent, finitely axiomatized, sequential theory cannot prove its own inconsistency on every definable cut. A corollary is that there are at least three degrees of global interpretability of theories equivalent modulo local interpretability to a consistent, finitely axiomatized, sequential theory U.
A theory T is trustworthy iff, whenever a theory U is interpretable in T, then it is faithfully interpretable. In this paper we give a characterization of trustworthiness. We provide a simple proof of Friedman’s Theorem that finitely axiomatized, sequential, consistent theories are trustworthy. We provide an example of a theory whose schematic predicate logic is complete Π20.
This paper is concerned with notions of consequence. On the one hand, we study admissible consequence, specifically for substitutions of Σ 1 0 -sentences over Heyting arithmetic . On the other hand, we study preservativity relations. The notion of preservativity of sentences over a given theory is a dual of the notion of conservativity of formulas over a given theory. We show that admissible consequence for Σ 1 0 -substitutions over HA coincides with NNIL -preservativity over intuitionistic propositional logic . (...) Here NNIL is the class of propositional formulas with no nestings of implications to the left . The identical embedding of IPC -derivability into a consequence relation has in many cases a left adjoint. The main tool of the present paper will be an algorithm to compute this left adjoint in the case of NNIL -preservativity. In the last section, we employ the methods developed in the paper to give a characterization the closed fragment of the provability logic of HA. (shrink)
This paper is concerned with the logical structure of arithmetical theories. We survey results concerning logics and admissible rules of constructive arithmetical theories. We prove a new theorem: the admissible propositional rules of Heyting Arithmetic are the same as the admissible propositional rules of Intuitionistic Propositional Logic. We provide some further insights concerning predicate logical admissible rules for arithmetical theories.
A Kripke model ? is a submodel of another Kripke model ℳ if ? is obtained by restricting the set of nodes of ℳ. In this paper we show that the class of formulas of Intuitionistic Predicate Logic that is preserved under taking submodels of Kripke models is precisely the class of semipositive formulas. This result is an analogue of the Łoś-Tarski theorem for the Classical Predicate Calculus.In Appendix A we prove that for theories with decidable identity we can take (...) as the embeddings between domains in Kripke models of the theory, the identical embeddings. This is a well known fact, but we know of no correct proof in the literature. In Appendix B we answer, negatively, a question posed by Sam Buss: whether there is a classical theory T, such that ℋT is HA. Here ℋT is the theory of all Kripke models ℳ such that the structures assigned to the nodes of ℳ all satisfy T in the sense of classical model theory. (shrink)
In this paper we study 1. the frame-theory of certain bimodal provability logics involving the reflection principle and we study2. certain specific bimodal logics with a provability predicate for a subtheory of Peano arithmetic axiomatized by a non-standardly finite number of axioms.
This paper is a presentation of astatus quæstionis, to wit of the problemof the interpretability logic of all reasonablearithmetical theories.We present both the arithmetical side and themodal side of the question.Dedicated to Dick de Jongh on the occasion of his 60th birthday.
In this paper we formulate a version of Second Incompleteness Theorem. The idea is that a sequential sentence has ‘consistency power’ over a theory if it enables us to construct a bounded interpretation of that theory. An interpretation of V in U is bounded if, for some n , all translations of V -sentences are U -provably equivalent to sentences of complexity less than n . We call a sequential sentence with consistency power over T a pro-consistency statement for T (...) . We study pro-consistency statements. We provide an example of a pro-consistency statement for a sequential sentence A that is weaker than an ordinary consistency statement for A . We show that, if A is $${{\sf S}^{1}_{2}}$$ , this sentence has some further appealing properties, specifically that it is an Orey sentence for EA . The basic ideas of the paper essentially involve sequential theories. We have a brief look at the wider environment of the results, to wit the case of theories with pairing. (shrink)
This paper is concerned with notions of consequence. On the one hand, we study admissible consequence, specifically for substitutions of Σ 1 0 -sentences over Heyting arithmetic . On the other hand, we study preservativity relations. The notion of preservativity of sentences over a given theory is a dual of the notion of conservativity of formulas over a given theory. We show that admissible consequence for Σ 1 0 -substitutions over HA coincides with NNIL -preservativity over intuitionistic propositional logic . (...) Here NNIL is the class of propositional formulas with no nestings of implications to the left . The identical embedding of IPC -derivability into a consequence relation has in many cases a left adjoint. The main tool of the present paper will be an algorithm to compute this left adjoint in the case of NNIL -preservativity. In the last section, we employ the methods developed in the paper to give a characterization the closed fragment of the provability logic of HA. (shrink)
In this paper we introduce a notion of context for Groenendijk & Stokhof's Dynamic Predicate Logic DPL. We use these contexts to give a characterization of the relations on assignments that can be generated by composition from tests and random resettings in the case that we are working over an infinite domain. These relations are precisely the ones expressible in DPL if we allow ourselves arbitrary tests as a starting point. We discuss some possible extensions of DPL and the way (...) these extensions interact with our notion of context. (shrink)
In this paper we study the interpretations of a weak arithmetic, like Buss’s theory $\mathsf{S}^{1}_{2}$, in a given theory $U$. We call these interpretations the arithmetics of $U$. We develop the basics of the structure of the arithmetics of $U$. We study the provability logic of $U$ from the standpoint of the framework of the arithmetics of $U$. Finally, we provide a deeper study of the arithmetics of a finitely axiomatized sequential theory.
Notice: This PDF version was distributed by request to members of the Friends of the SEP Society and by courtesy to SEP content contributors. It is solely for their fair use. Unauthorized distribution is prohibited. To learn how to join the Friends of the..
In this paper we prove that the preordering $\lesssim $ of provable implication over any recursively enumerable theory $T$ containing a modicum of arithmetic is uniformly dense. This means that we can find a recursive extensional density function $F$ for $\lesssim $. A recursive function $F$ is a density function if it computes, for $A$ and $B$ with $A\lnsim B$, an element $C$ such that $A\lnsim C\lnsim B$. The function is extensional if it preserves $T$-provable equivalence. Secondly, we prove a (...) general result that implies that, for extensions of elementary arithmetic, the ordering $\lesssim $ restricted to $\Sigma_{n}$-sentences is uniformly dense. In the last section we provide historical notes and background material. (shrink)
The problem of Uniqueness and Explicit Definability of Fixed Points for Interpretability Logic is considered. It turns out that Uniqueness is an immediate corollary of a theorem of Smoryski.
We investigate the theory IΔ 0 + Ω 1 and strengthen [Bu86. Theorem 8.6] to the following: if NP ≠ co-NP. then Σ-completeness for witness comparison formulas is not provable in bounded arithmetic. i.e. $I\delta_0 + \Omega_1 + \nvdash \forall b \forall c (\exists a(\operatorname{Prf}(a.c) \wedge \forall = \leq a \neg \operatorname{Prf} (z.b))\\ \rightarrow \operatorname{Prov} (\ulcorner \exists a(\operatorname{Prf}(a. \bar{c}) \wedge \forall z \leq a \neg \operatorname{Prf}(z.\bar{b})) \urcorner)).$ Next we study a "small reflection principle" in bounded arithmetic. We prove that for (...) all sentences φ $I\Delta_0 + \Omega_1 \vdash \forall x \operatorname{Prov}(\ulcorner \forall y \leq \bar{x} (\operatorname{Prf} (y. \overline{\ulcorner \varphi \urcorner}) \rightarrow \varphi)\urcorner).$ The proof hinges on the use of definable cuts and partial satisfaction predicates akin to those introduced by Pudlak in [Pu86]. Finally, we give some applications of the small reflection principle, showing that the principle can sometimes be invoked in order to circumvent the use of provable Σ-completeness for witness comparison formulas. (shrink)
In this paper we describe a framework for the construction of entities that can serve as interpretations of arbitrary contiguous chunks of text. An important part of the paper is devoted to describing stacking cells, or the proposed meanings for bracket-structures.
The problem of Uniqueness and Explicit Definability of Fixed Points for Interpretability Logic is considered. It turns out that Uniqueness is an immediate corollary of a theorem of Smoryński.
Vardanyan's theorem states that the set of PA-valid principles of Quantified Modal Logic, QML, is complete Π0 2. We generalize this result to a wide class of theories. The crucial step in the generalization is avoiding the use of Tennenbaum's Theorem.