Switch to: Citations

Add references

You must login to add references.
  1. The OBO Foundry: Coordinated evolution of ontologies to support biomedical data integration.Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug, Werner Ceusters, Louis J. Goldberg, Karen Eilbeck, Amelia Ireland, Christopher J. Mungall, Neocles Leontis, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone, Richard H. Scheuermann, Nigam Shah, Patricia L. Whetzel & Suzanna Lewis - 2007 - Nature Biotechnology 25 (11):1251-1255.
    The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or ‘ontologies’. Unfortunately, the very success of this approach has led to a proliferation of ontologies which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium has set in train a strategy to overcome this problem. Existing (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   136 citations  
  • A strategy for improving and integrating biomedical ontologies.Cornelius Rosse, Anand Kumar, Jose L. V. Mejino, Daniel L. Cook, Landon T. Detwiler & Barry Smith - 2005 - In Proceedings of the Annual Symposium of the American Medical Informatics Association. AMIA. pp. 639-643.
    The integration of biomedical terminologies is indispensable to the process of information integration. When terminologies are linked merely through the alignment of their leaf terms, however, differences in context and ontological structure are ignored. Making use of the SNAP and SPAN ontologies, we show how three reference domain ontologies can be integrated at a higher level, through what we shall call the OBR framework (for: Ontology of Biomedical Reality). OBR is designed to facilitate inference across the boundaries of domain ontologies (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Quality Control for Terms and Definitions in Ontologies and Taxonomies.Jacob Köhler, Katherine Munn, Alexander Rüegg, Andre Skusa & Barry Smith - 2006 - BMC Bioinformatics 7 (212):1-12.
    Background: Ontologies and taxonomies are among the most important computational resources for molecular biology and bioinformatics. A series of recent papers has shown that the Gene Ontology (GO), the most prominent taxonomic resource in these fields, is marked by flaws of certain characteristic types, which flow from a failure to address basic ontological principles. As yet, no methods have been proposed which would allow ontology curators to pinpoint flawed terms or definitions in ontologies in a systematic way. Results: We present (...)
    Direct download  
     
    Export citation  
     
    Bookmark   5 citations  
  • From concepts to clinical reality: An essay on the benchmarking of biomedical terminologies.Barry Smith - 2006 - Journal of Biomedical Informatics 39 (3):288-298.
    It is only by fixing on agreed meanings of terms in biomedical terminologies that we will be in a position to achieve that accumulation and integration of knowledge that is indispensable to progress at the frontiers of biomedicine. Standardly, the goal of fixing meanings is seen as being realized through the alignment of terms on what are called ‘concepts’. Part I addresses three versions of the concept-based approach – by Cimino, by Wüster, and by Campbell and associates – and surveys (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • A terminological and ontological analysis of the NCI thesaurus.Werner Ceusters, Barry Smith & Louis Goldberg - 2005 - Methods of Information in Medicine 44 (4):498-507.
    We performed a qualitative analysis of the Thesaurus in order to assess its conformity with principles of good practice in terminology and ontology design. We used both the on-line browsable version of the Thesaurus and its OWL-representation (version 04.08b, released on August 2, 2004), measuring each in light of the requirements put forward in relevant ISO terminology standards and in light of ontological principles advanced in the recent literature. Version 04.08b of the NCI Thesaurus suffers from the same broad range (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  • Ontology-based error detection in SNOMED-CT.Werner Ceusters, Barry Smith, Anand Kumar & Christoffel Dhaen - 2004 - Proceedings of Medinfo 2004:482-6.
    Quality assurance in large terminologies is a difficult issue. We present two algorithms that can help terminology developers and users to identify potential mistakes. We demon­strate the methodology by outlining the different types of mistakes that are found when the algorithms are applied to SNOMED-CT. On the basis of the results, we argue that both formal logical and linguistic tools should be used in the development and quality-assurance process of large terminologies.
    Direct download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Mistakes in medical ontologies: Where do they come from and how can they be detected?Werner Ceusters, Barry Smith, Anand Kumar & Christoffel Dhaen - 2004 - Studies in Health and Technology Informatics 102:145-164.
    We present the details of a methodology for quality assurance in large medical terminologies and describe three algorithms that can help terminology developers and users to identify potential mistakes. The methodology is based in part on linguistic criteria and in part on logical and ontological principles governing sound classifications. We conclude by outlining the results of applying the methodology in the form of a taxonomy different types of errors and potential errors detected in SNOMED-CT.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Would SNOMED CT benefit from realism-based ontology evolution?Werner Ceusters, Kent Spackman & Barry Smith - 2007 - AMIA Annual Symposium Proceedings 2007:105-109.
    If SNOMED CT is to serve as a biomedical reference terminology, then steps must be taken to ensure comparability of information formulated using successive versions. New releases are therefore shipped with a history mechanism. We assessed the adequacy of this mechanism for its treatment of the distinction between changes occurring on the side of entities in reality and changes in our understanding thereof. We found that these two types are only partially distinguished and that a more detailed study is required (...)
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Oncology ontology in the NCI Thesaurus.Anand Kumar & Barry Smith - 2005 - Artificial Intelligence in Medicine:213-220.
    The National Cancer Institute’s Thesaurus (NCIT) has been created with the goal of providing a controlled vocabulary which can be used by specialists in the various sub-domains of oncology. It is intended to be used for purposes of annotation in ways designed to ensure the integration of data and information deriving from these various sub-domains, and thus to support more powerful cross-domain inferences. In order to evaluate its suitability for this purpose, we examined the NCIT’s treatment of the kinds of (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Towards a Reference Terminology for Ontology Research and Development in the Biomedical Domain.Barry Smith, Waclaw Kusnierczyk, Daniel Schober, & Werner Ceusters - 2006 - In Proceedings of KR-MED, CEUR, vol. 222. pp. 57-65.
    Ontology is a burgeoning field, involving researchers from the computer science, philosophy, data and software engineering, logic, linguistics, and terminology domains. Many ontology-related terms with precise meanings in one of these domains have different meanings in others. Our purpose here is to initiate a path towards disambiguation of such terms. We draw primarily on the literature of biomedical informatics, not least because the problems caused by unclear or ambiguous use of terms have been there most thoroughly addressed. We advance a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  • CARO: The Common Anatomy Reference Ontology.Melissa Haendel, Fabian Neuhaus, David Osumi-Sutherland, Paula M. Mabee, José L. V. Mejino Jr, Chris J. Mungall & Barry Smith - 2008 - In Anatomy Ontologies for Bioinformatics: Principles and Practice. Springer. pp. 327-349.
    The Common Anatomy Reference Ontology (CARO) is being developed to facilitate interoperability between existing anatomy ontologies for different species, and will provide a template for building new anatomy ontologies. CARO has a structural axis of classification based on the top-level nodes of the Foundational Model of Anatomy. CARO will complement the developmental process sub-ontology of the GO Biological Process ontology, using it to ensure the coherent treatment of developmental stages, and to provide a common framework for the model organism communities (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Biodynamic Ontology: Applying BFO in the Biomedical Domain.Barry Smith, Pierre Grenon & Louis Goldberg - 2004 - Studies in Health and Technology Informatics 102:20–38.
    Current approaches to formal representation in biomedicine are characterized by their focus on either the static or the dynamic aspects of biological reality. We here outline a theory that combines both perspectives and at the same time tackles the by no means trivial issue of their coherent integration. Our position is that a good ontology must be capable of accounting for reality both synchronically (as it exists at a time) and diachronically (as it unfolds through time), but that these are (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   31 citations