Switch to: Citations

Add references

You must login to add references.
  1. Explanatory unification.Philip Kitcher - 1981 - Philosophy of Science 48 (4):507-531.
    The official model of explanation proposed by the logical empiricists, the covering law model, is subject to familiar objections. The goal of the present paper is to explore an unofficial view of explanation which logical empiricists have sometimes suggested, the view of explanation as unification. I try to show that this view can be developed so as to provide insight into major episodes in the history of science, and that it can overcome some of the most serious difficulties besetting the (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   576 citations  
  • Mind in a physical world: An essay on the mind–body problem and mental causation.Jaegwon Kim - 1998 - MIT Press.
    This book, based on Jaegwon Kim's 1996 Townsend Lectures, presents the philosopher's current views on a variety of issues in the metaphysics of the mind...
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   859 citations  
  • Strong and weak emergence.David J. Chalmers - 2006 - In Philip Clayton & Paul Davies (eds.), The re-emergence of emergence: the emergentist hypothesis from science to religion. New York: Oxford University Press.
    The term ‘emergence’ often causes confusion in science and philosophy, as it is used to express at least two quite different concepts. We can label these concepts _strong_ _emergence_ and _weak emergence_. Both of these concepts are important, but it is vital to keep them separate.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   147 citations  
  • Neither Weak, Nor Strong? Emergence and Functional Reduction.Sorin Bangu - 2015 - In Brigitte Falkenburg & Margaret Morrison (eds.), Why More is Different: Philosophical Issues in Condensed Matter Physics and Complex Systems. Berlin, Heidelberg: Springer. pp. 253-266.
    The paper argues that the phenomenon of first-order phase transitions (e.g., freezing) has features that make it a candidate to be classified as 'emergent'. However, it cannot be described either as 'weakly emergent' or 'strongly emergent'; hence it escapes categorization in terms employed in the current literature on the metaphysics of science.
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Metaphysics of Emergence.Hong Yu Wong - 2005 - Noûs 39 (4):658 - 678.
    The following framework of theses, roughly hewn, shapes contemporary discussion of the problem of mental causation: (1) Non-Identity of the Mental and the Physical Mental properties and states cannot be identified with specific physical properties and states. (2) Causal Closure (Completeness) of the Physical The objective probability of every physical event is fixed by prior physical events and laws alone. (This thesis is sometimes expressed in terms of explanation: In tracing the causal history of any physical event, one need not (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   90 citations  
  • What Is the Paradox of Phase Transitions?Elay Shech - 2013 - Philosophy of Science 80 (5):1170-1181.
    I present a novel approach to the scholarly debate that has arisen with respect to the philosophical import one should infer from scientific accounts of phase transitions by appealing to a distinction between representation understood as denotation, and faithful representation understood as a type of guide to ontology. It is argued that the entire debate is misguided, for it stems from a pseudo-paradox that does not license the type of claims made by scholars and that what is really interesting about (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  • Two Approaches to Fractional Statistics in the Quantum Hall Effect: Idealizations and the Curious Case of the Anyon.Elay Shech - 2015 - Foundations of Physics 45 (9):1063-1100.
    This paper looks at the nature of idealizations and representational structures appealed to in the context of the fractional quantum Hall effect, specifically, with respect to the emergence of anyons and fractional statistics. Drawing on an analogy with the Aharonov–Bohm effect, it is suggested that the standard approach to the effects— the topological approach to fractional statistics—relies essentially on problematic idealizations that need to be revised in order for the theory to be explanatory. An alternative geometric approach is outlined and (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Infinitesimal idealization, easy road nominalism, and fractional quantum statistics.Elay Shech - 2019 - Synthese 196 (5):1963-1990.
    It has been recently debated whether there exists a so-called “easy road” to nominalism. In this essay, I attempt to fill a lacuna in the debate by making a connection with the literature on infinite and infinitesimal idealization in science through an example from mathematical physics that has been largely ignored by philosophers. Specifically, by appealing to John Norton’s distinction between idealization and approximation, I argue that the phenomena of fractional quantum statistics bears negatively on Mary Leng’s proposed path to (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Idealizations, essential self-adjointness, and minimal model explanation in the Aharonov–Bohm effect.Shech Elay - 2018 - Synthese 195 (11):4839-4863.
    Two approaches to understanding the idealizations that arise in the Aharonov–Bohm effect are presented. It is argued that a common topological approach, which takes the non-simply connected electron configuration space to be an essential element in the explanation and understanding of the effect, is flawed. An alternative approach is outlined. Consequently, it is shown that the existence and uniqueness of self-adjoint extensions of symmetric operators in quantum mechanics have important implications for philosophical issues. Also, the alleged indispensable explanatory role of (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Fiction, Depiction, and the Complementarity Thesis in Art and Science.Elay Shech - 2016 - The Monist 99 (3):311-332.
    In this paper, I appeal to a distinction made by David Lewis between identifying and determining semantic content in order to defend a complementarity thesis expressed by Anjan Chakravartty. The thesis states that there is no conflict between informational and functional views of scientific modeling and representation. I then apply the complementarity thesis to well-received theories of pictorial representation, thereby stressing the fruitfulness of drawing an analogy between the nature of fictions in art and in science. I end by attending (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Ontological Emergence: How is That Possible? Towards a New Relational Ontology.Gil C. Santos - 2015 - Foundations of Science 20 (4):429-446.
    In this article I address the issue of the ontological conditions of possibility for a naturalistic notion of emergence, trying to determine its fundamental differences from the atomist, vitalist, preformationist and potentialist alternatives. I will argue that a naturalistic notion of ontological emergence can only succeed if we explicitly refuse the atomistic fundamental ontological postulate that asserts that every entity is endowed with a set of absolutely intrinsic properties, being qualitatively immutable through its extrinsic relations. Furthermore, it will be shown (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  • Scientific Explanation and the Causal Structure of the World.Wesley C. Salmon - 1984 - Princeton University Press.
    The philosophical theory of scientific explanation proposed here involves a radically new treatment of causality that accords with the pervasively statistical character of contemporary science. Wesley C. Salmon describes three fundamental conceptions of scientific explanation--the epistemic, modal, and ontic. He argues that the prevailing view is untenable and that the modal conception is scientifically out-dated. Significantly revising aspects of his earlier work, he defends a causal/mechanical theory that is a version of the ontic conception. Professor Salmon's theory furnishes a robust (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1037 citations  
  • Physical emergence, diachronic and synchronic.Alexander Rueger - 2000 - Synthese 124 (3):297-322.
    This paper explicates two notions of emergencewhich are based on two ways of distinguishinglevels of properties for dynamical systems.Once the levels are defined, the strategies ofcharacterizing the relation of higher level to lower levelproperties as diachronic and synchronic emergenceare the same. In each case, the higher level properties aresaid to be emergent if they are novel or irreducible with respect to the lower level properties. Novelty andirreducibility are given precise meanings in terms of the effectsthat the change of a bifurcation (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   62 citations  
  • The metaphysics of emergence.Timothy O'Connor - 2005 - Noûs 39 (4):658-678.
    The objective probability of every physical event is fixed by prior physical events and laws alone. (This thesis is sometimes expressed in terms of explanation: In tracing the causal history of any physical event, one need not advert to any non-physical events or laws. To the extent that there is any explanation available for a physical event, there is a complete explanation available couched entirely in physical vocabulary. We prefer the probability formulation, as it should be acceptable to any physicalist, (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   80 citations  
  • Approximation and Idealization: Why the Difference Matters.John D. Norton - 2012 - Philosophy of Science 79 (2):207-232.
    It is proposed that we use the term “approximation” for inexact description of a target system and “idealization” for another system whose properties also provide an inexact description of the target system. Since systems generated by a limiting process can often have quite unexpected, even inconsistent properties, familiar limit systems used in statistical physics can fail to provide idealizations, but are merely approximations. A dominance argument suggests that the limiting idealizations of statistical physics should be demoted to approximations.
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   118 citations  
  • The Structure of Science.Ernest Nagel - 1961 - Les Etudes Philosophiques 17 (2):275-275.
    Direct download  
     
    Export citation  
     
    Bookmark   869 citations  
  • Emergent Physics and Micro-Ontology.Margaret Morrison - 2012 - Philosophy of Science 79 (1):141-166.
    This article examines ontological/dynamical aspects of emergence, specifically the micro-macro relation in cases of universal behavior. I discuss superconductivity as an emergent phenomenon, showing why microphysical features such as Cooper pairing are not necessary for deriving characteristic properties such as infinite conductivity. I claim that the difficulties surrounding the thermodynamic limit in explaining phase transitions can be countered by showing how renormalization group techniques facilitate an understanding of the physics behind the mathematics, enabling us to clarify epistemic and ontological aspects (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   65 citations  
  • Emergence: logical, functional and dynamical. [REVIEW]Sandra D. Mitchell - 2012 - Synthese 185 (2):171-186.
    Philosophical accounts of emergence have been explicated in terms of logical relationships between statements (derivation) or static properties (function and realization). Jaegwon Kim is a modern proponent. A property is emergent if it is not explainable by (or reducible to) the properties of lower level components. This approach, I will argue, is unable to make sense of the kinds of emergence that are widespread in scientific explanations of complex systems. The standard philosophical notion of emergence posits the wrong dichotomies, confuses (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   41 citations  
  • Galilean Idealization.Ernan McMullin - 1985 - Studies in History and Philosophy of Science Part A 16 (3):247.
  • Mind in a Physical World: An Essay on the Mind-Body Problem and Mental Causation.Barry Loewer & Jaegwon Kim - 2001 - Journal of Philosophy 98 (6):315.
  • The quantum Hall effects: Philosophical approach.P. Lederer - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 50:25-42.
  • Reduction and emergence in the fractional quantum Hall state.Tom Lancaster & Mark Pexton - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):343-357.
  • Reduction and emergence in the physical sciences: Reply to Rueger.Max Kistler - 2006 - Synthese 151 (3):347 - 354.
    I analyse Rueger’s application of Kim’s model of functional reduction to the relation between the thermal conductivities of metal bars at macroscopic and atomic scales. 1) I show that it is a misunderstanding to accuse the functional reduction model of not accounting for the fact that there are causal powers at the micro-level which have no equivalent at the macro-level. The model not only allows but requires that the causal powers by virtue of which a functional predicate is defined, are (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • Making sense of emergence.Jaegwon Kim - 1999 - Philosophical Studies 95 (1-2):3-36.
  • Mind in a Physical World.Jaegwon Kim - 2001 - Noûs 35 (2):304-316.
    Direct download  
     
    Export citation  
     
    Bookmark   168 citations  
  • Emergence: Core ideas and issues.Jaegwon Kim - 2006 - Synthese 151 (3):547-559.
    This paper explores the fundamental ideas that have motivated the idea of emergence and the movement of emergentism. The concept of reduction, which lies at the heart of the emergence idea is explicated, and it is shown how the thesis that emergent properties are irreducible gives a unified account of emergence. The paper goes on to discuss two fundamental unresolved issues for emergentism. The first is that of giving a “positive” characterization of emergence; the second is to give a coherent (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   144 citations  
  • Aspects of Scientific Explanation and Other Essays in the Philosophy of Science.Carl Gustav Hempel - 1965 - New York: The Free Press.
  • A new look at emergence. Or when after is different.Alexandre Guay & Olivier Sartenaer - 2016 - European Journal for Philosophy of Science 6 (2):297-322.
    In this paper, we put forward a new account of emergence called “transformational emergence”. Such an account captures a variety of emergence that can be considered as being diachronic and weakly ontological. The fact that transformational emergence actually constitutes a genuine form of emergence is motivated. Besides, the account is free of traditional problems surrounding more usual, synchronic versions of emergence, and it can find a strong empirical support in a specific physical phenomenon, the fractional quantum Hall effect, which has (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   29 citations  
  • Scientific Explanation and the Causal Structure of the World.Ronald N. Giere - 1988 - Philosophical Review 97 (3):444.
  • Ontological reduction and molecular structure.Robin Findlay Hendry - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (2):183-191.
  • The role of idealizations in the Aharonov–Bohm effect.John Earman - 2017 - Synthese:1-29.
    On standard accounts of scientific theorizing, the role of idealizations is to facilitate the analysis of some real world system by employing a simplified representation of the target system, raising the obvious worry about how reliable knowledge can be obtained from inaccurate descriptions. The idealizations involved in the Aharonov–Bohm effect do not, it is claimed, fit this paradigm; rather the target system is a fictional system characterized by features that, though physically possible, are not realized in the actual world. The (...)
    No categories
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • The role of idealizations in the Aharonov–Bohm effect.John Earman - 2019 - Synthese 196 (5):1991-2019.
    On standard accounts of scientific theorizing, the role of idealizations is to facilitate the analysis of some real world system by employing a simplified representation of the target system, raising the obvious worry about how reliable knowledge can be obtained from inaccurate descriptions. The idealizations involved in the Aharonov–Bohm effect do not, it is claimed, fit this paradigm; rather the target system is a fictional system characterized by features that, though physically possible, are not realized in the actual world. The (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Less is Different: Emergence and Reduction Reconciled. [REVIEW]Jeremy Butterfield - 2011 - Foundations of Physics 41 (6):1065-1135.
    This is a companion to another paper. Together they rebut two widespread philosophical doctrines about emergence. The first, and main, doctrine is that emergence is incompatible with reduction. The second is that emergence is supervenience; or more exactly, supervenience without reduction.In the other paper, I develop these rebuttals in general terms, emphasising the second rebuttal. Here I discuss the situation in physics, emphasising the first rebuttal. I focus on limiting relations between theories and illustrate my claims with four examples, each (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   147 citations  
  • Minimal Model Explanations.Robert W. Batterman & Collin C. Rice - 2014 - Philosophy of Science 81 (3):349-376.
    This article discusses minimal model explanations, which we argue are distinct from various causal, mechanical, difference-making, and so on, strategies prominent in the philosophical literature. We contend that what accounts for the explanatory power of these models is not that they have certain features in common with real systems. Rather, the models are explanatory because of a story about why a class of systems will all display the same large-scale behavior because the details that distinguish them are irrelevant. This story (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   167 citations  
  • Critical phenomena and breaking drops: Infinite idealizations in physics.Robert Batterman - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (2):225-244.
    Thermodynamics and Statistical Mechanics are related to one another through the so-called "thermodynamic limit'' in which, roughly speaking the number of particles becomes infinite. At critical points (places of physical discontinuity) this limit fails to be regular. As a result, the "reduction'' of Thermodynamics to Statistical Mechanics fails to hold at such critical phases. This fact is key to understanding an argument due to Craig Callender to the effect that the thermodynamic limit leads to mistakes in Statistical Mechanics. I discuss (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   97 citations  
  • Understanding thermodynamic singularities: Phase transitions, data, and phenomena.Sorin Bangu - 2009 - Philosophy of Science 76 (4):488-505.
    According to standard (quantum) statistical mechanics, the phenomenon of a phase transition, as described in classical thermodynamics, cannot be derived unless one assumes that the system under study is infinite. This is naturally puzzling since real systems are composed of a finite number of particles; consequently, a well‐known reaction to this problem was to urge that the thermodynamic definition of phase transitions (in terms of singularities) should not be “taken seriously.” This article takes singularities seriously and analyzes their role by (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  • On the Role of Bridge Laws in Intertheoretic Relations.Sorin Bangu - 2011 - Philosophy of Science 78 (5):1108-1119.
    What is the role of bridge laws in inter-theoretic relations? An assumption shared by many views about these relations is that bridge laws enable reductions. In this article, I acknowledge the naturalness of this assumption, but I question it by presenting a context within thermal physics (involving phase transitions) in which the bridge laws, puzzlingly, seem to contribute to blocking the reduction.
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Conventionality of Parastatistics.David John Baker, Hans Halvorson & Noel Swanson - 2015 - British Journal for the Philosophy of Science 66 (4):929-976.
    Nature seems to be such that we can describe it accurately with quantum theories of bosons and fermions alone, without resort to parastatistics. This has been seen as a deep mystery: paraparticles make perfect physical sense, so why don’t we see them in nature? We consider one potential answer: every paraparticle theory is physically equivalent to some theory of bosons or fermions, making the absence of paraparticles in our theories a matter of convention rather than a mysterious empirical discovery. We (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Emergence in effective field theories.Jonathan Bain - 2013 - European Journal for Philosophy of Science 3 (3):257-273.
    This essay considers the extent to which a concept of emergence can be associated with Effective Field Theories (EFTs). I suggest that such a concept can be characterized by microphysicalism and novelty underwritten by the elimination of degrees of freedom from a high-energy theory, and argue that this makes emergence in EFTs distinct from other concepts of emergence in physics that have appeared in the recent philosophical literature.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Emergence and mechanism in the fractional quantum Hall effect.Jonathan Bain - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 56:27-38.
  • How to Do Science with Models: A Philosophical Primer.Axel Gelfert - 2016 - Cham: Springer.
    Taking scientific practice as its starting point, this book charts the complex territory of models used in science. It examines what scientific models are and what their function is. Reliance on models is pervasive in science, and scientists often need to construct models in order to explain or predict anything of interest at all. The diversity of kinds of models one finds in science – ranging from toy models and scale models to theoretical and mathematical models – has attracted attention (...)
  • Simulation and Similarity: Using Models to Understand the World.Michael Weisberg - 2013 - New York, US: Oxford University Press.
    one takes to be the most salient, any pair could be judged more similar to each other than to the third. Goodman uses this second problem to showthat there can be no context-free similarity metric, either in the trivial case or in a scientifically ...
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   363 citations  
  • Reexamining the Quantum-Classical Relation: Beyond Reductionism and Pluralism.Alisa Bokulich - 2008 - Cambridge University Press.
    Classical mechanics and quantum mechanics are two of the most successful scientific theories ever discovered, and yet how they can describe the same world is far from clear: one theory is deterministic, the other indeterministic; one theory describes a world in which chaos is pervasive, the other a world in which chaos is absent. Focusing on the exciting field of 'quantum chaos', this book reveals that there is a subtle and complex relation between classical and quantum mechanics. It challenges the (...)
    Direct download  
     
    Export citation  
     
    Bookmark   74 citations  
  • The devil in the details: asymptotic reasoning in explanation, reduction, and emergence.Robert W. Batterman - 2002 - New York: Oxford University Press.
    Robert Batterman examines a form of scientific reasoning called asymptotic reasoning, arguing that it has important consequences for our understanding of the scientific process as a whole. He maintains that asymptotic reasoning is essential for explaining what physicists call universal behavior. With clarity and rigor, he simplifies complex questions about universal behavior, demonstrating a profound understanding of the underlying structures that ground them. This book introduces a valuable new method that is certain to fill explanatory gaps across disciplines.
  • Turn and Face the Strange... Ch-ch-changes: Philosophical Questions Raised by Phase Transitions.Tarun Menon & Craig Callender - 2013 - In Robert W. Batterman (ed.), The Oxford Handbook of Philosophy of Physics. Oxford University Press.
    Phase transitions are an important instance of putatively emergent behavior. Unlike many things claimed emergent by philosophers, the alleged emergence of phase transitions stems from both philosophical and scientific arguments. Here we focus on the case for emergence built from physics, in particular, arguments based upon the infinite idealization invoked in the statistical mechanical treatment of phase transitions. After teasing apart several challenges, we defend the idea that phase transitions are best thought of as conceptually novel, but not ontologically or (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  • Why does Water Boil? Fictions in Scientific Explanation.Sorin Bangu - 2015 - In U. Mäki (ed.), Recent Developments in the Philosophy of Science. Springer. pp. 319-330.
    The paper discuses whether the mathematical singularities characterizing first-order phase transitions are 'fictions'.
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A function for fictions: expanding the scope of science.Eric Winsberg - 2009 - In Mauricio Suárez (ed.), Fictions in Science: Philosophical Essays on Modeling and Idealization. Routledge. pp. 4--179.
    No categories
     
    Export citation  
     
    Bookmark   10 citations  
  • The Exploratory Role of Idealizations and Limiting Cases in Models.Elay Shech & Axel Gelfert - forthcoming - Studia Metodologiczne.
    In this article we argue that idealizations and limiting cases in models play an exploratory role in science. Four senses of exploration are presented: exploration of the structure and representational capacities of theory; proof-of-principle demonstrations; potential explanations; and exploring the suitability of target systems. We illustrate our claims through three case studies, including the Aharonov-Bohm effect, the emergence of anyons and fractional quantum statistics, and the Hubbard model of the Mott phase transitions. We end by reflecting on how our case (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • Quantum statistical physics.Gérard Emch - 2007 - In Jeremy Butterfield & John Earman (eds.), Philosophy of Physics. Elsevier. pp. 1075--1182.