References in:
Add references
You must login to add references.
|
|
Why does classical equilibrium statistical mechanics work? Malament and Zabell (1980) noticed that, for ergodic dynamical systems, the unique absolutely continuous invariant probability measure is the microcanonical. Earman and Rédei (1996) replied that systems of interest are very probably not ergodic, so that absolutely continuous invariant probability measures very distant from the microcanonical exist. In response I define the generalized properties of epsilon-ergodicity and epsilon-continuity, I review computational evidence indicating that systems of interest are epsilon-ergodic, I adapt Malament and Zabell’s (...) |
|
We propose an "explanation scheme" for why the Gibbs phase average technique in classical equilibrium statistical mechanics works. Our account emphasizes the importance of the Khinchin-Lanford dispersion theorems. We suggest that ergodicity does play a role, but not the one usually assigned to it. |
|
Some philosphers of science of an empiricist and pragmatist bent have proposed models of statistical explanation, but have then become sceptical of the adequacy of these models. It is argued that general considerations concerning the purpose of function of explanation in science which are usually appealed to by such philosophers show that their scepticism is not well taken; for such considerations provide much the same rationale for the search for statistical explanations, as these philosophers have characterized them, as they do (...) |
|
|
|
This chapter explores some fundamental consequences of the correspondence between physical process and computations. Most physical questions may be answerable only through irreducible amounts of computation. Those that concern idealized limits of infinite time, volume, or numerical precision can require arbitrarily long computations, and so be considered formally undecidable. The behavior of a physical system may always be calculated by simulating explicitly each step in its evolution. Much of theoretical physics has, however, been concerned with devising shorter methods of calculation (...) |
|
Statistical mechanics is one of the crucial fundamental theories of physics, and in his new book Lawrence Sklar, one of the pre-eminent philosophers of physics, offers a comprehensive, non-technical introduction to that theory and to attempts to understand its foundational elements. Among the topics treated in detail are: probability and statistical explanation, the basic issues in both equilibrium and non-equilibrium statistical mechanics, the role of cosmology, the reduction of thermodynamics to statistical mechanics, and the alleged foundation of the very notion (...) |
|
|
|
|
|
|
|
|
|
|