Switch to: Citations

Add references

You must login to add references.
  1. Towards an Ontology of Mental Functioning (ICBO Workshop).Janna Hastings, Werner Ceusters, Mark Jensen, Kevin Mulligan & Barry Smith - 2012 - In Janna Hastings, Werner Ceusters, Mark Jensen, Kevin Mulligan & Barry Smith (eds.), Proceeedings of the Third International Conference on Biomedical Ontology.
  • Development of a Manufacturing Ontology for Functionally Graded Materials.Francesco Furini, Rahul Rai, Barry Smith, Georgio Colombo & Venkat Krovi - 2016 - In Francesco Furini, Rahul Rai, Barry Smith, Georgio Colombo & Venkat Krovi (eds.), Proceedings of International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC/CIE).
    The development of manufacturing technologies for new materials involves the generation of a large and continually evolving volume of information. The analysis, integration and management of such large volumes of data, typically stored in multiple independently developed databases, creates significant challenges for practitioners. There is a critical need especially for open-sharing of data pertaining to engineering design which together with effective decision support tools can enable innovation. We believe that ontology applied to engineering (OE) represents a viable strategy for the (...)
    Direct download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Functions in Basic Formal Ontology.Andrew D. Spear, Werner Ceusters & Barry Smith - 2016 - Applied ontology 11 (2):103-128.
    The notion of function is indispensable to our understanding of distinctions such as that between being broken and being in working order (for artifacts) and between being diseased and being healthy (for organisms). A clear account of the ontology of functions and functioning is thus an important desideratum for any top-level ontology intended for application to domains such as engineering or medicine. The benefit of using top-level ontologies in applied ontology can only be realized when each of the categories identified (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  • The OBO Foundry: Coordinated evolution of ontologies to support biomedical data integration.Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug, Werner Ceusters, Louis J. Goldberg, Karen Eilbeck, Amelia Ireland, Christopher J. Mungall, Neocles Leontis, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone, Richard H. Scheuermann, Nigam Shah, Patricia L. Whetzel & Suzanna Lewis - 2007 - Nature Biotechnology 25 (11):1251-1255.
    The value of any kind of data is greatly enhanced when it exists in a form that allows it to be integrated with other data. One approach to integration is through the annotation of multiple bodies of data using common controlled vocabularies or ‘ontologies’. Unfortunately, the very success of this approach has led to a proliferation of ontologies which itself creates obstacles to integration. The Open Biomedical Ontologies (OBO) consortium has set in train a strategy to overcome this problem. Existing (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   136 citations  
  • The metaphysics of real estate.Barry Smith & Leo Zaibert - 2001 - Topoi 20 (2):161-172.
    The thesis that an analysis of property rights is essential to an adequate analysis of the state is a mainstay of political philosophy. The contours of the type of government a society has are shaped by the system regulating the property rights prevailing in that society. Views of this sort are widespread. They range from Locke to Nozick and encompass pretty much everything else in between. Defenders of this sort of view accord to property rights supreme importance. A state that (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • .Morris Silver - 2016 - 98 (1):184-202.
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The Ontology for Biomedical Investigations.Anita Bandrowski, Ryan Brinkman, Mathias Brochhausen, Matthew H. Brush, Bill Bug, Marcus C. Chibucos, Kevin Clancy, Mélanie Courtot, Dirk Derom, Michel Dumontier, Liju Fan, Jennifer Fostel, Gilberto Fragoso, Frank Gibson, Alejandra Gonzalez-Beltran, Melissa A. Haendel, Yongqun He, Mervi Heiskanen, Tina Hernandez-Boussard, Mark Jensen, Yu Lin, Allyson L. Lister, Phillip Lord, James Malone, Elisabetta Manduchi, Monnie McGee, Norman Morrison, James A. Overton, Helen Parkinson, Bjoern Peters, Philippe Rocca-Serra, Alan Ruttenberg, Susanna-Assunta Sansone, Richard H. Scheuermann, Daniel Schober, Barry Smith, Larisa N. Soldatova, Christian J. Stoeckert, Chris F. Taylor, Carlo Torniai, Jessica A. Turner, Randi Vita, Patricia L. Whetzel & Jie Zheng - 2016 - PLoS ONE 11 (4):e0154556.
    The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to (...)
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  • Building Ontologies with Basic Formal Ontology.Robert Arp, Barry Smith & Andrew D. Spear - 2015 - Cambridge, MA: MIT Press.
    In the era of “big data,” science is increasingly information driven, and the potential for computers to store, manage, and integrate massive amounts of data has given rise to such new disciplinary fields as biomedical informatics. Applied ontology offers a strategy for the organization of scientific information in computer-tractable form, drawing on concepts not only from computer and information science but also from linguistics, logic, and philosophy. This book provides an introduction to the field of applied ontology that is of (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   68 citations  
  • A strategy for improving and integrating biomedical ontologies.Cornelius Rosse, Anand Kumar, Jose L. V. Mejino, Daniel L. Cook, Landon T. Detwiler & Barry Smith - 2005 - In Proceedings of the Annual Symposium of the American Medical Informatics Association. AMIA. pp. 639-643.
    The integration of biomedical terminologies is indispensable to the process of information integration. When terminologies are linked merely through the alignment of their leaf terms, however, differences in context and ontological structure are ignored. Making use of the SNAP and SPAN ontologies, we show how three reference domain ontologies can be integrated at a higher level, through what we shall call the OBR framework (for: Ontology of Biomedical Reality). OBR is designed to facilitate inference across the boundaries of domain ontologies (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Development of FuGO: An ontology for functional genomics investigations.Patricia L. Whetzel, Ryan R. Brinkman, Helen C. Causton, Liju Fan, Dawn Field, Jennifer Fostel, Gilberto Fragoso, Tanya Gray, Mervi Heiskana, Tina Hernandez-Boussard & Barry Smith - 2006 - Omics: A Journal of Integrative Biology 10 (2):199-204.
    The development of the Functional Genomics Investigation Ontology (FuGO) is a collaborative, international effort that will provide a resource for annotating functional genomics investigations, including the study design, protocols and instrumentation used, the data generated and the types of analysis performed on the data. FuGO will contain both terms that are universal to all functional genomics investigations and those that are domain specific. In this way, the ontology will serve as the “semantic glue” to provide a common understanding of data (...)
    No categories
    Direct download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Industrial Ontologies Foundry proof-of-concept project.Evan Wallace, Dimitris Kiritsis, Barry Smith & Chris Will - 2018 - In Ilkyeong Moon, Gyu M. Lee, Jinwoo Park, Dimitris Kiritsis & Gregor von Cieminski (eds.), Advances in Production Management Systems. Smart Manufacturing for Industry 4.0. IFIP. pp. 402-409.
    The current industrial revolution is said to be driven by the digitization that exploits connected information across all aspects of manufacturing. Standards have been recognized as an important enabler. Ontology-based information standard may provide benefits not offered by current information standards. Although there have been ontologies developed in the industrial manufacturing domain, they have been fragmented and inconsistent, and little has received a standard status. With successes in developing coherent ontologies in the biological, biomedical, and financial domains, an effort called (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Product Life Cycle Ontology for Additive Manufacturing.Munira Mohd Ali, Rahul Rai, J. Neil Otte & Barry Smith - 2019 - Computers in Industry 105:191-203.
    The manufacturing industry is evolving rapidly, becoming more complex, more interconnected, and more geographically distributed. Competitive pressure and diversity of consumer demand are driving manufacturing companies to rely more and more on improved knowledge management practices. As a result, multiple software systems are being created to support the integration of data across the product life cycle. Unfortunately, these systems manifest a low degree of interoperability, and this creates problems, for instance when different enterprises or different branches of an enterprise interact. (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   1 citation