References in:
Some properties of r-maximal sets and Q 1,N -reducibility
Archive for Mathematical Logic 54 (7-8):941-959 (2015)
Add references
You must login to add references.
|
|
|
|
We show that the Q-degree of a hyperhypersimple set includes an infinite collection of Q 1-degrees linearly ordered under ${\leq_{Q_1}}$ with order type of the integers and consisting entirely of hyperhypersimple sets. Also, we prove that the c.e. Q 1-degrees are not an upper semilattice. The main result of this paper is that the Q 1-degree of a hemimaximal set contains only one c.e. 1-degree. Analogous results are valid for ${\Pi_1^0}$ s 1-degrees. |
|
A splitting of an r.e. set A is a pair A1, A2 of disjoint r.e. sets such that A1 A2 = A. Theorems about splittings have played an important role in recursion theory. One of the main reasons for this is that a splitting of A is a decomposition of A in both the lattice, , of recursively enumerable sets and in the uppersemilattice, R, of recursively enumerable degrees . Thus splitting theor ems have been used to obtain results about (...) |
|
|