Switch to: Citations

References in:

The Equivalence Principle(s)

In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge (2022)

Add references

You must login to add references.
  1. The Dynamical Approach to Spacetime Theories.Harvey R. Brown & James Read - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    We review the dynamical approach to spacetime theories---in particular, its origins in the development of special relativity, its opposition to the contemporary `geometrical' approach, and the manner in which it plays out in general relativity. In addition, we demonstrate that the approach is compatible with the `angle bracket school'.
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • The Physical Content of General Covariance.John D. Norton - 1982 - In John Norton (ed.).
  • The mathematical theory of relativity.Arthur Stanley Eddington - 1923 - Cambridge [Eng.]: The University Press.
    This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain (...)
    Direct download  
     
    Export citation  
     
    Bookmark   56 citations  
  • Rethinking Newton’s Principia.Simon Saunders - 2013 - Philosophy of Science 80 (1):22-48.
    It is widely accepted that the notion of an inertial frame is central to Newtonian mechanics and that the correct space-time structure underlying Newton’s methods in Principia is neo-Newtonian or Galilean space-time. I argue to the contrary that inertial frames are not needed in Newton’s theory of motion, and that the right space-time structure for Newton’s Principia requires the notion of parallelism of spatial directions at different times and nothing more. Only relative motions are definable in this framework, never absolute (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   49 citations  
  • What was Einstein's Principle of Equivalence?John Norton - 1985 - Studies in History and Philosophy of Science Part A 16 (3):203.
    sn y™to˜er —nd xovem˜er IWHUD just over two ye—rs —fter the ™ompletion of his spe™i—l theory of rel—tivityD iinstein m—de the ˜re—kthrough th—t set him on the p—th to the gener—l theory of rel—tivityF ‡hile prep—ring — review —rti™le on his new spe™i—l theory of rel—tivityD he ˜e™—me ™onvin™ed th—t the key to the extension of the prin™iple of rel—tivity to —™™eler—ted motion l—y in the rem—rk—˜le —nd unexpl—ined empiri™—l ™oin™iden™e of the equ—lity of inerti—l —nd gr—vit—tion—l m—ssesF „o interpret (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   70 citations  
  • Effective spacetime geometry.Eleanor Knox - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):346-356.
    I argue that the need to understand spacetime structure as emergent in quantum gravity is less radical and surprising it might appear. A clear understanding of the link between general relativity's geometrical structures and empirical geometry reveals that this empirical geometry is exactly the kind of thing that could be an effective and emergent matter. Furthermore, any theory with torsion will involve an effective geometry, even though these theories look, at first glance, like theories with straightforward spacetime geometry. As it's (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   57 citations  
  • The twins and the bucket: How Einstein made gravity rather than motion relative in general relativity.Michel Janssen - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (3):159-175.
    In publications in 1914 and 1918, Einstein claimed that his new theory of gravity in some sense relativizes the rotation of a body with respect to the distant stars and the acceleration of the traveler with respect to the stay-at-home in the twin paradox. What he showed was that phenomena seen as inertial effects in a space-time coordinate system in which the non-accelerating body is at rest can be seen as a combination of inertial and gravitational effects in a space-time (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • The twins and the bucket: How Einstein made gravity rather than motion relative in general relativity.Michel Janssen - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (3):159-175.
    In publications in 1914 and 1918, Einstein claimed that his new theory of gravity somehow relativizes the rotation of a body with respect to the distant stars and the acceleration of the traveler with respect to the stay-at-home in the twin paradox. What he showed was that phenomena seen as inertial effects in a space-time coordinate system in which the non-accelerating body is at rest can be seen as a combination of inertial and gravitational effects in a space-time coordinate system (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   11 citations  
  • Einstein's struggle for a Machian gravitation theory.Carl Hoefer - 1994 - Studies in History and Philosophy of Science Part A 25 (3):287-335.
    The story of Einstein's struggle to create a general theory of relativity, and his early discontentment with the final form of the theory , is well known in broad outline. Thanks to the work of John Norton and others, much of the fine detail of the story is also now known. One aspect of Einstein's work in this period has, however, been relatively neglected: Einstein's commitment to Mach's ideas on inertia, and the influence this commitment had on Einstein's work on (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  • What is (not) wrong with scalar gravity?Domenico Giulini - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (1):154-180.
    On his way to General Relativity (GR) Einstein gave several arguments as to why a special relativistic theory of gravity based on a massless scalar field could be ruled out merely on grounds of theoretical considerations. We re-investigate his two main arguments, which relate to energy conservation and some form of the principle of the universality of free fall. We find that such a theory-based a priori abandonment not to be justified. Rather, the theory seems formally perfectly viable, though in (...)
    Direct download (16 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Talking at cross-purposes: how Einstein and the logical empiricists never agreed on what they were disagreeing about.Marco Giovanelli - 2013 - Synthese 190 (17):3819-3863.
    By inserting the dialogue between Einstein, Schlick and Reichenbach into a wider network of debates about the epistemology of geometry, this paper shows that not only did Einstein and Logical Empiricists come to disagree about the role, principled or provisional, played by rods and clocks in General Relativity, but also that in their lifelong interchange, they never clearly identified the problem they were discussing. Einstein’s reflections on geometry can be understood only in the context of his ”measuring rod objection” against (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • ‘…But I still can׳t get rid of a sense of artificiality’: The Reichenbach–Einstein debate on the geometrization of the electromagnetic field.Marco Giovanelli - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 54:35-51.
    This paper analyzes correspondence between Reichenbach and Einstein from the spring of 1926, concerning what it means to ‘geometrize’ a physical field. The content of a typewritten note that Reichenbach sent to Einstein on that occasion is reconstructed, showing that it was an early version of §49 of the untranslated Appendix to his Philosophie der Raum-Zeit-Lehre, on which Reichenbach was working at the time. This paper claims that the toy-geometrization of the electromagnetic field that Reichenbach presented in his note should (...)
    No categories
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • ‘But one must not legalize the mentioned sin’: Phenomenological vs. dynamical treatments of rods and clocks in Einstein׳s thought.Marco Giovanelli - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 48 (1):20-44.
    The paper offers a historical overview of Einstein's oscillating attitude towards a "phenomenological" and "dynamical" treatment of rods and clocks in relativity theory. Contrary to what it has been usually claimed in recent literature, it is argued that this distinction should not be understood in the framework of opposition between principle and constructive theories. In particular Einstein does not seem to have plead for a "dynamical" explanation for the phenomenon rods contraction and clock dilation which was initially described only "kinematically". (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • The Principle of Equivalence.Michel Ghins & Tim Budden - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (1):33-51.
  • Against Pointillisme about Geometry.Jeremy Butterfield - 2005 - In Michael Stöltzner & Friedrich Stadler (eds.), Time and History: Proceedings of the 28. International Ludwig Wittgenstein Symposium, Kirchberg Am Wechsel, Austria 2005. De Gruyter. pp. 181-222.
    This paper forms part of a wider campaign: to deny pointillisme. That is the doctrine that a physical theory's fundamental quantities are defined at points of space or of spacetime, and represent intrinsic properties of such points or point-sized objects located there; so that properties of spatial or spatiotemporal regions and their material contents are determined by the point-by-point facts. More specifically, this paper argues against pointillisme about the structure of space and-or spacetime itself, especially a paper by Bricker (1993). (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • Minkowski space-time: A glorious non-entity.Harvey R. Brown & Oliver Pooley - 2004 - In Dennis Dieks (ed.), The Ontology of Spacetime. Elsevier. pp. 67--89.
    It is argued that Minkowski space-time cannot serve as the deep structure within a ``constructive'' version of the special theory of relativity, contrary to widespread opinion in the philosophical community.
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   101 citations  
  • General covariance and the foundations of general relativity: Eight decades of dispute.John D. Norton - 1993 - Reports of Progress in Physics 56:791--861.
    iinstein oered the prin™iple of gener—l ™ov—ri—n™e —s the fund—ment—l physi™—l prin™iple of his gener—l theory of rel—tivityD —nd —s responsi˜le for extending the prin™iple of rel—tivity to —™™eler—ted motionF „his view w—s disputed —lmost immedi—tely with the ™ounterE™l—im th—t the prin™iple w—s no rel—tivity prin™iple —nd w—s physi™—lly v—™uousF „he dis—greeE ment persists tod—yF „his —rti™le reviews the development of iinstein9s thought on gener—l ™ov—ri—n™eD its rel—tion to the found—tions of gener—l rel—tivity —nd the evolution of the ™ontinuing de˜—te (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   90 citations  
  • Of pots and holes: Einstein's bumpy road to general relativity.Michel Janssen - unknown
    Readers of this volume will notice that it contains only a few papers on general relativity. This is because most papers documenting the genesis and early development of general relativity were not published in Annalen der Physik . After Einstein took up his new prestigious position at the Prussian Academy of Sciences in the spring of 1914, the Sitzungsberichte of the Berlin academy almost by default became the main outlet for his scientific production. Two of the more important papers on (...)
     
    Export citation  
     
    Bookmark   17 citations  
  • Über den physikalischen sinn der relativitätspostulate.E. Kretschmann - 1917 - Annalen Der Physik 53:575--614.
    No categories
     
    Export citation  
     
    Bookmark   77 citations  
  • Einstein's Role in the Creation of Relativistic Cosmology.Chris Smeenk - 2014 - In Michel Janssen & Christoph Lehner (eds.), The Cambridge Companion to Einstein. Cambridge: Cambridge University Press. pp. 228-269.
    This volume is the first systematic presentation of the work of Albert Einstein, comprising fourteen essays by leading historians and philosophers of science that introduce readers to his work. Following an introduction that places Einstein's work in the context of his life and times, the book opens with essays on the papers of Einstein's 'miracle year', 1905, covering Brownian motion, light quanta, and special relativity, as well as his contributions to early quantum theory and the opposition to his light quantum (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • The origins of the spacetime Metric: Bell’s Lorentzian Pedagogy and its significance in general relativity.Harvey R. Brown & Oliver Pooley - 1999 - In Craig Callender & Nick Huggett (eds.), Physics Meets Philosophy at the Plank Scale. Cambridge University Press. pp. 256--72.
    The purpose of this paper is to evaluate the `Lorentzian Pedagogy' defended by J.S. Bell in his essay ``How to teach special relativity'', and to explore its consistency with Einstein's thinking from 1905 to 1952. Some remarks are also made in this context on Weyl's philosophy of relativity and his 1918 gauge theory. Finally, it is argued that the Lorentzian pedagogy---which stresses the important connection between kinematics and dynamics---clarifies the role of rods and clocks in general relativity.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   44 citations  
  • Mach's principle before Einstein.John D. Norton - 1995 - In Julian B. Barbour & H. Pfister (eds.), Mach's Principle: From Newton's Bucket to Quantum Gravity. Birkhäuser.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   10 citations  
  • Einstein, the reality of space, and the action-reaction principle.Dennis Lehmkuhl, P. Ghose & Harvey Brown - unknown
    Einstein regarded as one of the triumphs of his 1915 theory of gravity - the general theory of relativity - that it vindicated the action-reaction principle, while Newtonian mechanics as well as his 1905 special theory of relativity supposedly violated it. In this paper we examine why Einstein came to emphasise this position several years after the development of general relativity. Several key considerations are relevant to the story: the connection Einstein originally saw between Mach's analysis of inertia and both (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Das Problem der Trägheit.Domenico Giulini - 2002 - Philosophia Naturalis 39:343.
    No categories
     
    Export citation  
     
    Bookmark   4 citations