- Nonstandard analysis and constructivism?Frank Wattenberg - 1988 - Studia Logica 47 (3):303 - 309.details
|
|
Hidden lemmas in Euler's summation of the reciprocals of the squares.Curtis Tuckey & Mark McKinzie - 1997 - Archive for History of Exact Sciences 51 (1):29-57.details
|
|
Cauchy et Bolzano.H. Sinaceur - 1973 - Revue d'Histoire des Sciences 26 (2):97-112.details
|
|
Zeno's metrical paradox revisited.David M. Sherry - 1988 - Philosophy of Science 55 (1):58-73.details
|
|
Unique solutions.Peter Schuster - 2006 - Mathematical Logic Quarterly 52 (6):534-539.details
|
|
A nonstandard proof of a lemma from constructive measure theory.David A. Ross - 2006 - Mathematical Logic Quarterly 52 (5):494-497.details
|
|
Non-standard Analysis.Gert Heinz Müller - 1974 - Princeton University Press.details
|
|
The Logic of Relatives.Charles S. Peirce - 1897 - The Monist 7 (2):161-217.details
|
|
Infinitesimals as an issue of neo-Kantian philosophy of science.Thomas Mormann & Mikhail Katz - 2013 - Hopos: The Journal of the International Society for the History of Philosophy of Science (2):236-280.details
|
|
Perceiving the infinite and the infinitesimal world: Unveiling and optical diagrams in mathematics. [REVIEW]Lorenzo Magnani & Riccardo Dossena - 2005 - Foundations of Science 10 (1):7-23.details
|
|
Early delta functions and the use of infinitesimals in research.Detlef Laugwitz - 1992 - Revue d'Histoire des Sciences 45 (1):115-128.details
|
|
Definite values of infinite sums: Aspects of the foundations of infinitesimal analysis around 1820.Detlef Laugwitz - 1989 - Archive for History of Exact Sciences 39 (3):195-245.details
|
|
Effective moduli from ineffective uniqueness proofs. An unwinding of de La Vallée Poussin's proof for Chebycheff approximation.Ulrich Kohlenbach - 1993 - Annals of Pure and Applied Logic 64 (1):27-94.details
|
|
Leibniz's rigorous foundation of infinitesimal geometry by means of riemannian sums.Eberhard Knobloch - 2002 - Synthese 133 (1-2):59 - 73.details
|
|
Leibniz’s Infinitesimals: Their Fictionality, Their Modern Implementations, and Their Foes from Berkeley to Russell and Beyond. [REVIEW]Mikhail G. Katz & David Sherry - 2013 - Erkenntnis 78 (3):571-625.details
|
|
Cauchy's Continuum.Karin U. Katz & Mikhail G. Katz - 2011 - Perspectives on Science 19 (4):426-452.details
|
|
A Burgessian Critique of Nominalistic Tendencies in Contemporary Mathematics and its Historiography.Karin Usadi Katz & Mikhail G. Katz - 2012 - Foundations of Science 17 (1):51-89.details
|
|
A Cauchy-Dirac Delta Function.Mikhail G. Katz & David Tall - 2013 - Foundations of Science 18 (1):107-123.details
|
|
Almost Equal: The Method of Adequality from Diophantus to Fermat and Beyond.Mikhail G. Katz, David M. Schaps & Steven Shnider - 2013 - Perspectives on Science 21 (3):283-324.details
|
|
The Fan Theorem and Unique Existence of Maxima.Josef Berger, Douglas Bridges & Peter Schuster - 2006 - Journal of Symbolic Logic 71 (2):713 - 720.details
|
|
An omniscience principle, the König Lemma and the Hahn‐Banach theorem.Hajime Ishihara - 1990 - Mathematical Logic Quarterly 36 (3):237-240.details
|
|
An omniscience principle, the König Lemma and the Hahn-Banach theorem.Hajime Ishihara - 1990 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 36 (3):237-240.details
|
|
Mathematical constructivism in spacetime.Geoffrey Hellman - 1998 - British Journal for the Philosophy of Science 49 (3):425-450.details
|
|
The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes.Philip Ehrlich - 2006 - Archive for History of Exact Sciences 60 (1):1-121.details
|
|
Sequences of real functions on [0, 1] in constructive reverse mathematics.Hannes Diener & Iris Loeb - 2009 - Annals of Pure and Applied Logic 157 (1):50-61.details
|
|
Constructive Functional Analysis.D. S. Bridges & Peter Zahn - 1982 - Journal of Symbolic Logic 47 (3):703-705.details
|
|
Who Gave You the Cauchy–Weierstrass Tale? The Dual History of Rigorous Calculus.Alexandre Borovik & Mikhail G. Katz - 2012 - Foundations of Science 17 (3):245-276.details
|
|
Foundations of Constructive Analysis.John Myhill - 1972 - Journal of Symbolic Logic 37 (4):744-747.details
|
|
Constructive Analysis.Errett Bishop & Douglas Bridges - 1987 - Journal of Symbolic Logic 52 (4):1047-1048.details
|
|
Brouwer's fan theorem and unique existence in constructive analysis.Josef Berger & Hajime Ishihara - 2005 - Mathematical Logic Quarterly 51 (4):360-364.details
|
|
What numbers could not be.Paul Benacerraf - 1965 - Philosophical Review 74 (1):47-73.details
|
|
Galileo’s quanti: understanding infinitesimal magnitudes.Tiziana Bascelli - 2014 - Archive for History of Exact Sciences 68 (2):121-136.details
|
|
Foundations of Constructive Analysis.Errett Bishop - 1967 - New York, NY, USA: Mcgraw-Hill.details
|
|
A Primer of Infinitesimal Analysis.John L. Bell - 1998 - Cambridge University Press.details
|
|
Constructivism in mathematics: an introduction.A. S. Troelstra - 1988 - New York, N.Y.: Sole distributors for the U.S.A. and Canada, Elsevier Science Pub. Co.. Edited by D. van Dalen.details
|
|
Mlle Camille Bos.[author unknown] - 1907 - Revue Philosophique de la France Et de l'Etranger 64:660-660.details
|
|
Zeno.D. M. Sherry - 1988 - International Studies in Philosophy Monograph Series:77-81.details
|
|
A Definable Nonstandard Model Of The Reals.Vladimir Kanovei & Saharon Shelah - 2004 - Journal of Symbolic Logic 69 (1):159-164.details
|
|
Continuity and Infinitesimals.John L. Bell - unknowndetails
|
|
Mathematics through diagrams: microscopes in non-standard and smooth analysis.R. Dossena & L. Magnani - 2007 - In L. Magnani & P. Li (eds.), Model-Based Reasoning in Science, Technology, and Medicine. Springer. pp. 193--213.details
|
|
Relationships between constructive, predicative and classical systems of analysis.Solomon Feferman - unknowndetails
|
|
Peirce's clarifications of continuity.Jérôme Havenel - 2008 - Transactions of the Charles S. Peirce Society 44 (1):pp. 86-133.details
|
|