Switch to: Citations

Add references

You must login to add references.
  1. Change without change, and how to observe it in general relativity.Richard Healey - 2004 - Synthese 141 (3):381 - 415.
    All change involves temporal variation of properties. There is change in the physical world only if genuine physical magnitudes take on different values at different times. I defend the possibility of change in a general relativistic world against two skeptical arguments recently presented by John Earman. Each argument imposes severe restrictions on what may count as a genuine physical magnitude in general relativity. These restrictions seem justified only as long as one ignores the fact that genuine change in a relativistic (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Can Physics Coherently Deny the Reality of Time?Richard Healey - 2002 - Royal Institute of Philosophy Supplement 50:293-.
    The conceptual and technical difficulties involved in creating a quantum theory of gravity have led some physicists to question, and even in some cases to deny, the reality of time. More surprisingly, this denial has found a sympathetic audience among certain philosophers of physics. What should we make of these wild ideas? Does it even make sense to deny the reality of time? In fact physical science has been chipping away at common sense aspects of time ever since its inception. (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   37 citations  
  • Thoroughly muddled Mctaggart: Or, how to abuse gauge freedom to create metaphysical monostrosities.Tim Maudlin - 2002 - Philosophers' Imprint 2:1-23.
    It has long been a commonplace that there is a problem understanding the role of time when one tries to quantize the General Theory of Relativity (GTR). In his "Thoroughly Modern McTaggart" (Philosophers' Imprint Vol 2, No. 3), John Earman presents several arguments to the conclusion that there is a problem understanding change and the passage of time in the unadorned GTR, quite apart from quantization. His Young McTaggart argues that according to the GTR, no physical magnitude ever changes. A (...)
    Direct download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Thoroughly modern Mctaggart: Or, what Mctaggart would have said if he had read the general theory of relativity.John Earman - 2002 - Philosophers' Imprint 2:1-28.
    The philosophical literature on time and change is fixated on the issue of whether the B-series account of change is adequate or whether real change requires Becoming of either the property-based variety of McTaggart's A-series or the non-property-based form embodied in C. D. Broad's idea of the piling up of successive layers of existence. For present purposes it is assumed that the B-series suffices to ground real change. But then it is noted that modern science in the guise of Einstein's (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   73 citations  
  • Tracking down gauge: An ode to the constrained Hamiltonian formalism.John Earman - 2003 - In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. Cambridge University Press. pp. 140--62.
    Like moths attracted to a bright light, philosophers are drawn to glitz. So in discussing the notions of ‘gauge’, ‘gauge freedom’, and ‘gauge theories’, they have tended to focus on examples such as Yang–Mills theories and on the mathematical apparatus of fibre bundles. But while Yang–Mills theories are crucial to modern elementary particle physics, they are only a special case of a much broader class of gauge theories. And while the fibre bundle apparatus turned out, in retrospect, to be the (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   38 citations  
  • Time in Quantum Gravity: An Hypothesis.Carlo Rovelli - 1991 - Physical Review D 43 (2):451–456.
    A solution to the issue of time in quantum gravity is proposed. The hypothesis that time is not defined at the fundamental level (at the Planck scale) is considered. A natural extension of canonical Heisenberg-picture quantum mechanics is defined. It is shown that this extension is well defined and can be used to describe the "non-Schrödinger regime," in which a fundamental time variable is not defined. This conclusion rests on a detailed analysis of which quantities are the physical observables of (...)
     
    Export citation  
     
    Bookmark   36 citations  
  • Quantum gravity: A Primer for philosophers.Dean Rickles - unknown
    ‘Quantum Gravity’ does not denote any existing theory: the field of quantum gravity is very much a ‘work in progress’. As you will see in this chapter, there are multiple lines of attack each with the same core goal: to find a theory that unifies, in some sense, general relativity (Einstein’s classical field theory of gravitation) and quantum field theory (the theoretical framework through which we understand the behaviour of particles in non-gravitational fields). Quantum field theory and general relativity seem (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   22 citations