Switch to: Citations

Add references

You must login to add references.
  1. Computing machinery and intelligence.Alan M. Turing - 1950 - Mind 59 (October):433-60.
    I propose to consider the question, "Can machines think?" This should begin with definitions of the meaning of the terms "machine" and "think." The definitions might be framed so as to reflect so far as possible the normal use of the words, but this attitude is dangerous, If the meaning of the words "machine" and "think" are to be found by examining how they are commonly used it is difficult to escape the conclusion that the meaning and the answer to (...)
    Direct download (18 more)  
     
    Export citation  
     
    Bookmark   1000 citations  
  • On Computable Numbers, with an Application to the Entscheidungsproblem.Alan Turing - 1936 - Proceedings of the London Mathematical Society 42 (1):230-265.
  • Two dogmas of computationalism.Oron Shagrir - 1997 - Minds and Machines 7 (3):321-44.
    This paper challenges two orthodox theses: (a) that computational processes must be algorithmic; and (b) that all computed functions must be Turing-computable. Section 2 advances the claim that the works in computability theory, including Turing's analysis of the effective computable functions, do not substantiate the two theses. It is then shown (Section 3) that we can describe a system that computes a number-theoretic function which is not Turing-computable. The argument against the first thesis proceeds in two stages. It is first (...)
    Direct download (15 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Evolved Computing Devices and the Implementation Problem.Lukáš Sekanina - 2007 - Minds and Machines 17 (3):311-329.
    The evolutionary circuit design is an approach allowing engineers to realize computational devices. The evolved computational devices represent a distinctive class of devices that exhibits a specific combination of properties, not visible and studied in the scope of all computational devices up till now. Devices that belong to this class show the required behavior; however, in general, we do not understand how and why they perform the required computation. The reason is that the evolution can utilize, in addition to the (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   1 citation  
  • Formal Reductions of the General Combinatorial Decision Problem.Emil L. Post - 1943 - Journal of Symbolic Logic 8 (1):50-52.
    Direct download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Computationalism, The Church–Turing Thesis, and the Church–Turing Fallacy.Gualtiero Piccinini - 2007 - Synthese 154 (1):97-120.
    The Church–Turing Thesis (CTT) is often employed in arguments for computationalism. I scrutinize the most prominent of such arguments in light of recent work on CTT and argue that they are unsound. Although CTT does nothing to support computationalism, it is not irrelevant to it. By eliminating misunderstandings about the relationship between CTT and computationalism, we deepen our appreciation of computationalism as an empirical hypothesis.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Alan Turing and the mathematical objection.Gualtiero Piccinini - 2003 - Minds and Machines 13 (1):23-48.
    This paper concerns Alan Turing’s ideas about machines, mathematical methods of proof, and intelligence. By the late 1930s, Kurt Gödel and other logicians, including Turing himself, had shown that no finite set of rules could be used to generate all true mathematical statements. Yet according to Turing, there was no upper bound to the number of mathematical truths provable by intelligent human beings, for they could invent new rules and methods of proof. So, the output of a human mathematician, for (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  • Effective Computation by Humans and Machines.Shagrir Oron - 2002 - Minds and Machines 12 (2):221-240.
    There is an intensive discussion nowadays about the meaning of effective computability, with implications to the status and provability of the Church–Turing Thesis (CTT). I begin by reviewing what has become the dominant account of the way Turing and Church viewed, in 1936, effective computability. According to this account, to which I refer as the Gandy–Sieg account, Turing and Church aimed to characterize the functions that can be computed by a human computer. In addition, Turing provided a highly convincing argument (...)
    Direct download (15 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Size and Structure of Universal Turing Machines using Tag Systems.M. L. Minsky - 1966 - Journal of Symbolic Logic 31 (4):655-655.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   2 citations  
  • Minds, Machines and Gödel.J. R. Lucas - 1961 - Etica E Politica 5 (1):1.
    In this article, Lucas maintains the falseness of Mechanism - the attempt to explain minds as machines - by means of Incompleteness Theorem of Gödel. Gödel’s theorem shows that in any system consistent and adequate for simple arithmetic there are formulae which cannot be proved in the system but that human minds can recognize as true; Lucas points out in his turn that Gödel’s theorem applies to machines because a machine is the concrete instantiation of a formal system: therefore, for (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   154 citations  
  • Minds, Machines and Gödel.John R. Lucas - 1961 - Philosophy 36 (137):112-127.
    Gödei's Theorem seems to me to prove that Mechanism is false, that is, that minds cannot be explained as machines. So also has it seemed to many other people: almost every mathematical logician I have put the matter to has confessed to similar thoughts, but has felt reluctant to commit himself definitely until he could see the whole argument set out, with all objections fully stated and properly met. This I attempt to do.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   191 citations  
  • Universal intelligence: A definition of machine intelligence.Shane Legg & Marcus Hutter - 2007 - Minds and Machines 17 (4):391-444.
    A fundamental problem in artificial intelligence is that nobody really knows what intelligence is. The problem is especially acute when we need to consider artificial systems which are significantly different to humans. In this paper we approach this problem in the following way: we take a number of well known informal definitions of human intelligence that have been given by experts, and extract their essential features. These are then mathematically formalised to produce a general measure of intelligence for arbitrary machines. (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   55 citations  
  • Turing’s imitation game: still an impossible challenge for all machines and some judges.Luciano Floridi, Mariarosaria Taddeo & Matteo Turilli - 2009 - Minds and Machines 19 (1):145–150.
    An Evaluation of the 2008 Loebner Contest.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • Turing’s imitation game: still an impossible challenge for all machines and some judges––an evaluation of the 2008 Loebner contest. [REVIEW]Luciano Floridi & Mariarosaria Taddeo - 2009 - Minds and Machines 19 (1):145-150.
    An evaluation of the 2008 Loebner contest.
    Direct download (14 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • Hypercomputation.B. Jack Copeland - 2002 - Minds and Machines 12 (4):461-502.
  • Turing A. M.. On computable numbers, with an application to the Entscheidungs problcm. Proceedings of the London Mathematical Society, 2 s. vol. 42 , pp. 230–265. [REVIEW]Alonzo Church - 1937 - Journal of Symbolic Logic 2 (1):42-43.
  • An Unsolvable Problem of Elementary Number Theory.Alonzo Church - 1936 - Journal of Symbolic Logic 1 (2):73-74.
  • Turing’s Responses to Two Objections.Darren Abramson - 2008 - Minds and Machines 18 (2):147-167.
    In this paper I argue that Turing’s responses to the mathematical objection are straightforward, despite recent claims to the contrary. I then go on to show that by understanding the importance of learning machines for Turing as related not to the mathematical objection, but to Lady Lovelace’s objection, we can better understand Turing’s response to Lady Lovelace’s objection. Finally, I argue that by understanding Turing’s responses to these objections more clearly, we discover a hitherto unrecognized, substantive thesis in his philosophical (...)
    Direct download (9 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • The emperor’s new mind.Roger Penrose - 1989 - Oxford University Press.
    Winner of the Wolf Prize for his contribution to our understanding of the universe, Penrose takes on the question of whether artificial intelligence will ever ...
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   572 citations  
  • Shadows of the Mind: A Search for the Missing Science of Consciousness.Roger Penrose - 1994 - Oxford University Press.
    Presenting a look at the human mind's capacity while criticizing artificial intelligence, the author makes suggestions about classical and quantum physics and ..
  • Computing Machinery and Intelligence.Alan M. Turing - 2003 - In John Heil (ed.), Philosophy of Mind: A Guide and Anthology. Oxford University Press.
    No categories
     
    Export citation  
     
    Bookmark   588 citations  
  • Beyond the doubting of a shadow.Roger Penrose - 1995 - PSYCHE: An Interdisciplinary Journal of Research On Consciousness 2:89-129.