Switch to: Citations

Add references

You must login to add references.
  1. On c-extendible cardinals.Konstantinos Tsaprounis - 2018 - Journal of Symbolic Logic 83 (3):1112-1131.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   3 citations  
  • On extendible cardinals and the GCH.Konstantinos Tsaprounis - 2013 - Archive for Mathematical Logic 52 (5-6):593-602.
    We give a characterization of extendibility in terms of embeddings between the structures H λ . By that means, we show that the GCH can be forced (by a class forcing) while preserving extendible cardinals. As a corollary, we argue that such cardinals cannot in general be made indestructible by (set) forcing, under a wide variety of forcing notions.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • On resurrection axioms.Konstantinos Tsaprounis - 2015 - Journal of Symbolic Logic 80 (2):587-608.
    The resurrection axioms are forms of forcing axioms that were introduced recently by Hamkins and Johnstone, who developed on earlier ideas of Chalons and Veličković. In this note, we introduce a stronger form of resurrection and show that it gives rise to families of axioms which are consistent relative to extendible cardinals, and which imply the strongest known instances of forcing axioms, such as Martin’s Maximum++. In addition, we study the unbounded resurrection postulates in terms of consistency lower bounds, obtaining, (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Elementary chains and C (n)-cardinals.Konstantinos Tsaprounis - 2014 - Archive for Mathematical Logic 53 (1-2):89-118.
    The C (n)-cardinals were introduced recently by Bagaria and are strong forms of the usual large cardinals. For a wide range of large cardinal notions, Bagaria has shown that the consistency of the corresponding C (n)-versions follows from the existence of rank-into-rank elementary embeddings. In this article, we further study the C (n)-hierarchies of tall, strong, superstrong, supercompact, and extendible cardinals, giving some improved consistency bounds while, at the same time, addressing questions which had been left open. In addition, we (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   6 citations  
  • Squares, scales and stationary reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (01):35-98.
    Since the work of Gödel and Cohen, which showed that Hilbert's First Problem was independent of the usual assumptions of mathematics, there have been a myriad of independence results in many areas of mathematics. These results have led to the systematic study of several combinatorial principles that have proven effective at settling many of the important independent statements. Among the most prominent of these are the principles diamond and square discovered by Jensen. Simultaneously, attempts have been made to find suitable (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   102 citations  
  • Scales, squares and reflection.James Cummings, Matthew Foreman & Menachem Magidor - 2001 - Journal of Mathematical Logic 1 (1):35-98.
    Since the work of Gödel and Cohen, which showed that Hilbert's First Problem was independent of the usual assumptions of mathematics, there have been a myriad of independence results in many areas of mathematics. These results have led to the systematic study of several combinatorial principles that have proven effective at settling many of the important independent statements. Among the most prominent of these are the principles diamond and square discovered by Jensen. Simultaneously, attempts have been made to find suitable (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   64 citations  
  • Superstrong and other large cardinals are never Laver indestructible.Joan Bagaria, Joel David Hamkins, Konstantinos Tsaprounis & Toshimichi Usuba - 2016 - Archive for Mathematical Logic 55 (1-2):19-35.
    Superstrong cardinals are never Laver indestructible. Similarly, almost huge cardinals, huge cardinals, superhuge cardinals, rank-into-rank cardinals, extendible cardinals, 1-extendible cardinals, 0-extendible cardinals, weakly superstrong cardinals, uplifting cardinals, pseudo-uplifting cardinals, superstrongly unfoldable cardinals, Σn-reflecting cardinals, Σn-correct cardinals and Σn-extendible cardinals are never Laver indestructible. In fact, all these large cardinal properties are superdestructible: if κ exhibits any of them, with corresponding target θ, then in any forcing extension arising from nontrivial strategically <κ-closed forcing Q∈Vθ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • On ${\omega _1}$-strongly compact cardinals.Joan Bagaria & Menachem Magidor - 2014 - Journal of Symbolic Logic 79 (1):266-278.
  • C(n)-cardinals.Joan Bagaria - 2012 - Archive for Mathematical Logic 51 (3-4):213-240.
    For each natural number n, let C(n) be the closed and unbounded proper class of ordinals α such that Vα is a Σn elementary substructure of V. We say that κ is a C(n)-cardinal if it is the critical point of an elementary embedding j : V → M, M transitive, with j(κ) in C(n). By analyzing the notion of C(n)-cardinal at various levels of the usual hierarchy of large cardinal principles we show that, starting at the level of superstrong (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   18 citations  
  • The least strongly compact can be the least strong and indestructible.Arthur W. Apter - 2006 - Annals of Pure and Applied Logic 144 (1-3):33-42.
    We construct two models in which the least strongly compact cardinal κ is also the least strong cardinal. In each of these models, κ satisfies indestructibility properties for both its strong compactness and strongness.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • Diamond, square, and level by level equivalence.Arthur W. Apter - 2005 - Archive for Mathematical Logic 44 (3):387-395.
    We force and construct a model in which level by level equivalence between strong compactness and supercompactness holds, along with certain additional combinatorial properties. In particular, in this model, ♦ δ holds for every regular uncountable cardinal δ, and below the least supercompact cardinal κ, □ δ holds on a stationary subset of κ. There are no restrictions in our model on the structure of the class of supercompact cardinals.
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   5 citations