Switch to: Citations

Add references

You must login to add references.
  1. Reductionism and the Relation Between Chemistry and Physics.Hasok Chang - 2015 - In Ana Simões, Jürgen Renn & Theodore Arabatzis (eds.), Relocating the History of Science: Essays in Honor of Kostas Gavroglu. Springer Verlag.
     
    Export citation  
     
    Bookmark   13 citations  
  • A comment on “Editorial 37”.Brian T. Sutcliffe & R. Guy Woolley - 2011 - Foundations of Chemistry 13 (2):93-95.
    A comment on “Editorial 37” Content Type Journal Article Pages 93-95 DOI 10.1007/s10698-011-9110-4 Authors Brian T. Sutcliffe, Laboratoire de Chimie quantique et Photophysique, Université Libre de Bruxelles, B-1050 Bruxelles, Belgium R. Guy Woolley, School of Biomedical and Natural Sciences, Nottingham Trent University, Nottingham, NG11 8NS UK Journal Foundations of Chemistry Online ISSN 1572-8463 Print ISSN 1386-4238 Journal Volume Volume 13 Journal Issue Volume 13, Number 2.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Editorial 37.Eric R. Scerri - 2011 - Foundations of Chemistry 13 (1):1-7.
  • The logic of reduction: The case of gravitation. [REVIEW]Fritz Rohrlich - 1989 - Foundations of Physics 19 (10):1151-1170.
    The reduction from Einstein's to Newton's gravitation theories (and intermediate steps) is used to exemplify reduction in physical theories. Both dimensionless and dimensional reduction are presented, and the advantages and disadvantages of each are pointed out. It is concluded that neither a completely reductionist nor a completely antireductionist view can be maintained. Only the mathematical structure is strictly reducible. The interpretation (the model, the central concepts) of the superseded theory T′ can at best only partially be derived directly from the (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   27 citations  
  • Three measurement problems.Tim Maudlin - 1995 - Topoi 14 (1):7-15.
    The aim of this essay is to distinguish and analyze several difficulties confronting attempts to reconcile the fundamental quantum mechanical dynamics with Born''s rule. It is shown that many of the proposed accounts of measurement fail at least one of the problems. In particular, only collapse theories and hidden variables theories have a chance of succeeding, and, of the latter, the modal interpretations fail. Any real solution demands new physics.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   102 citations  
  • Two-step emergence: the quantum theory of atoms in molecules as a bridge between quantum mechanics and molecular chemistry.Chérif F. Matta, Olimpia Lombardi & Jesús Jaimes Arriaga - 2020 - Foundations of Chemistry 22 (1):107-129.
    By moving away from the traditional reductionist reading of the quantum theory of atoms in molecules, in this paper we analyze the role played by QTAIM in the relationship between molecular chemistry and quantum mechanics from an emergentist perspective. In particular, we show that such a relationship involves two steps: an intra-domain emergence and an inter-domain emergence. Intra-domain emergence, internal to quantum mechanics, results from the fact that the electron density, from which all the other QTAIM’s concepts are defined, arises (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Isomerism and decoherence.Juan Camilo Martínez González, Olimpia Lombardi & Sebastian Fortin - 2016 - Foundations of Chemistry 18 (3):225-240.
    In the present paper we address the problem of optical isomerism embodied in the socalled “Hund’s paradox”, which points to the difficulty to account for chirality by means of quantum mechanics. In particular, we explain the answer to the problem proposed by the theory of decoherence. The purpose of this article is to challenge this answer on the basis of a conceptual analysis of the phenomenon of decoherence, that reveals the limitations of the theory of decoherence to solve the difficulties (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • A modal-Hamiltonian interpretation of quantum mechanics.Olimpia Lombardi & Mario Castagnino - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):380-443.
    The aim of this paper is to introduce a new member of the family of the modal interpretations of quantum mechanics. In this modal-Hamiltonian interpretation, the Hamiltonian of the quantum system plays a decisive role in the property-ascription rule that selects the definite-valued observables whose possible values become actual. We show that this interpretation is effective for solving the measurement problem, both in its ideal and its non-ideal versions, and we argue for the physical relevance of the property-ascription rule by (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   41 citations  
  • A modal-Hamiltonian interpretation of quantum mechanics.Olimpia Lombardi & Mario Castagnino - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):380-443.
    The aim of this paper is to introduce a new member of the family of the modal interpretations of quantum mechanics. In this modal-Hamiltonian interpretation, the Hamiltonian of the quantum system plays a decisive role in the property-ascription rule that selects the definite-valued observables whose possible values become actual. We show that this interpretation is effective for solving the measurement problem, both in its ideal and its non-ideal versions, and we argue for the physical relevance of the property-ascription rule by (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   43 citations  
  • The physicists, the chemists, and the pragmatics of explanation.Robin Findlay Hendry - 2004 - Philosophy of Science 71 (5):1048-1059.
    In this paper I investigate two views of theoretical explanation in quantum chemistry, advocated by John Clarke Slater and Charles Coulson. Slater argued for quantum‐mechanical rigor, and the primacy of fundamental principles in models of chemical bonding. Coulson emphasized systematic explanatory power within chemistry, and continuity with existing chemical explanations. I relate these views to the epistemic contexts of their disciplines.
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  • Two conceptions of the chemical bond.Robin Findlay Hendry - 2008 - Philosophy of Science 75 (5):909-920.
    In this article I sketch G. N. Lewis’s views on chemical bonding and Linus Pauling’s attempt to preserve Lewis’s insights within a quantum‐mechanical theory of the bond. I then set out two broad conceptions of the chemical bond, the structural and the energetic views, which differ on the extent in which they preserve anything like the classical chemical bond in the modern quantum‐mechanical understanding of molecular structure. †To contact the author, please write to: Department of Philosophy, Durham University, 50 Old (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   36 citations  
  • Dissipating the quantum measurement problem.Richard Healey - 1995 - Topoi 14 (1):55-65.
    The integration of recent work on decoherence into a so-called modal interpretation offers a promising new approach to the measurement problem in quantum mechanics. In this paper I explain and develop this approach in the context of the interactive interpretation presented in Healey (1989). I begin by questioning a number of assumptions which are standardly made in setting up the measurement problem, and I conclude that no satisfactory solution can afford to ignore the influence of the environment. Further, I argue (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   13 citations  
  • Why molecular structure cannot be strictly reduced to quantum mechanics.Juan Camilo Martínez González, Sebastian Fortin & Olimpia Lombardi - 2018 - Foundations of Chemistry 21 (1):31-45.
    Perhaps the hottest topic in the philosophy of chemistry is that of the relationship between chemistry and physics. The problem finds one of its main manifestations in the debate about the nature of molecular structure, given by the spatial arrangement of the nuclei in a molecule. The traditional strategy to address the problem is to consider chemical cases that challenge the definition of molecular structure in quantum–mechanical terms. Instead of taking that top-down strategy, in this paper we face the problem (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Problem of Molecular Structure Just Is The Measurement Problem.Alexander Franklin & Vanessa Angela Seifert - forthcoming - The British Journal for the Philosophy of Science.
    Whether or not quantum physics can account for molecular structure is a matter of considerable controversy. Three of the problems raised in this regard are the problems of molecular structure. We argue that these problems are just special cases of the measurement problem of quantum mechanics: insofar as the measurement problem is solved, the problems of molecular structure are resolved as well. In addition, we explore one consequence of our argument: that claims about the reduction or emergence of molecular structure (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Isomerism and decoherence.Sebastian Fortin, Olimpia Lombardi & Juan Camilo Martínez González - 2016 - Foundations of Chemistry 18 (3):225-240.
    In the present paper we address the problem of optical isomerism embodied in the socalled “Hund’s paradox”, which points to the difficulty to account for chirality by means of quantum mechanics. In particular, we explain the answer to the problem proposed by the theory of decoherence. The purpose of this article is to challenge this answer on the basis of a conceptual analysis of the phenomenon of decoherence, that reveals the limitations of the theory of decoherence to solve the difficulties (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   14 citations  
  • A new application of the modal-Hamiltonian interpretation of quantum mechanics: The problem of optical isomerism.Sebastian Fortin, Olimpia Lombardi & Juan Camilo Martínez González - 2018 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 62:123-135.
    The modal-Hamiltonian interpretation belongs to the modal family of interpretations of quantum mechanics. By endowing the Hamiltonian with the role of selecting the subset of the definite-valued observables of the system, it accounts for ideal and non-ideal measurements, and also supplies a criterion to distinguish between reliable and non-reliable measurements in the non-ideal case. It can be reformulated in an explicitly invariant form, in terms of the Casimir operators of the Galilean group, and the compatibility of the MHI with the (...)
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   9 citations  
  • Ontological reduction and molecular structure.Robin Findlay Hendry - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41 (2):183-191.
  • Matters are not so clear on the physical side.Mario Castagnino - 2010 - Foundations of Chemistry 12 (2):159-166.
    According to ontological reductionism, molecular chemistry refers, at last, to the quantum ontology; therefore, the ontological commitments of chemistry turn out to be finally grounded on quantum mechanics. The main problem of this position is that nobody really knows what quantum ontology is. The purpose of this work is to argue that the confidence in the existence of the physical entities described by quantum mechanics does not take into account the interpretative problems of the theory: in the discussions about the (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   19 citations  
  • The classical limit of quantum theory.John T. Bruer - 1982 - Synthese 50 (2):167 - 212.
    Both physicists and philosophers claim that quantum mechanics reduces to classical mechanics as 0, that classical mechanics is a limiting case of quantum mechanics. If so, several formal and non-formal conditions must be satisfied. These conditions are satisfied in a reduction using the Wigner transformation to map quantum mechanics onto the classical phase plane. This reduction does not, however, assist in providing an adequate metaphysical interpretation of quantum theory.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the non-existence of parallel universes in chemistry.Richard F. W. Bader - 2011 - Foundations of Chemistry 13 (1):11-37.
    This treatise presents thoughts on the divide that exists in chemistry between those who seek their understanding within a universe wherein the laws of physics apply and those who prefer alternative universes wherein the laws are suspended or ‘bent’ to suit preconceived ideas. The former approach is embodied in the quantum theory of atoms in molecules (QTAIM), a theory based upon the properties of a system’s observable distribution of charge. Science is experimental observation followed by appeal to theory that, upon (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Why decoherence has not solved the measurement problem: a response to P.W. Anderson.Stephen L. Adler - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):135-142.
  • Why decoherence has not solved the measurement problem: a response to P.W. Anderson.Stephen L. Adler - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):135-142.
  • Reducing Chemistry to Physics: Limits, Models, Consequences.Hinne Hettema - 2012 - Createspace.
    Chemistry and physics are two sciences that are hard to connect. Yet there is significant overlap in their aims, methods, and theoretical approaches. In this book, the reduction of chemistry to physics is defended from the viewpoint of a naturalised Nagelian reduction, which is based on a close reading of Nagel's original text. This naturalised notion of reduction is capable of characterising the inter-theory relationships between theories of chemistry and theories of physics. The reconsideration of reduction also leads to a (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  • Understanding Quantum Mechanics.Roland Omnès - 1999 - Princeton University Press.
    Here Roland Omnès offers a clear, up-to-date guide to the conceptual framework of quantum mechanics. In an area that has provoked much philosophical debate, Omnès has achieved high recognition for his Interpretation of Quantum Mechanics (Princeton 1994), a book for specialists. Now the author has transformed his own theory into a short and readable text that enables beginning students and experienced physicists, mathematicians, and philosophers to form a comprehensive picture of the field while learning about the most recent advances. This (...)
    Direct download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Emergence in exact natural science.Hans Primas - unknown
    The context of an operational description is given by the distinction between what we consider as relevant and what as irrelevant for a particular experiment or observation. A rigorous description of a context in terms of a mathematically formulated context-independent fundamental theory is possible by the restriction of the domain of the basic theory and the introduction of a new coarser topology. Such a new topology is never given by first principles, but depends in a crucial way on the abstractions (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   46 citations  
  • Interpreting the Quantum World.Jeffrey Bub - 1998 - British Journal for the Philosophy of Science 49 (4):637-641.
  • Models and approximations in quantum chemistry.Robin Findlay Hendry - 1998 - Poznan Studies in the Philosophy of the Sciences and the Humanities 63:123-142.