Switch to: Citations

Add references

You must login to add references.
  1. Emergence and singular limits.Andrew Wayne - 2012 - Synthese 184 (3):341-356.
    Recent work by Robert Batterman and Alexander Rueger has brought attention to cases in physics in which governing laws at the base level “break down” and singular limit relations obtain between base- and upper-level theories. As a result, they claim, these are cases with emergent upper-level properties. This paper contends that this inference—from singular limits to explanatory failure, novelty or irreducibility, and then to emergence—is mistaken. The van der Pol nonlinear oscillator is used to show that there can be a (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   17 citations  
  • An inferential conception of scientific representation.Mauricio Suárez - 2004 - Philosophy of Science 71 (5):767-779.
    This paper defends an inferential conception of scientific representation. It approaches the notion of representation in a deflationary spirit, and minimally characterizes the concept as it appears in science by means of two necessary conditions: its essential directionality and its capacity to allow surrogate reasoning and inference. The conception is defended by showing that it successfully meets the objections that make its competitors, such as isomorphism and similarity, untenable. In addition the inferential conception captures the objectivity of the cognitive representations (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   243 citations  
  • Dappled theories in a uniform world.Lawrence Sklar - 2003 - Philosophy of Science 70 (2):424-441.
    It has been argued, most trenchantly by Nancy Cartwright, that the diversity of the concepts and regularities we actually use to describe nature and predict and explain its behavior leaves us with no reason to believe that our foundational physical theories actually "apply" outside of delicately contrived systems within the laboratory. This paper argues that, diversity of method notwithstanding, there is indeed good reason to think that the foundational laws of physics are universal in their scope.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   30 citations  
  • What Is the Paradox of Phase Transitions?Elay Shech - 2013 - Philosophy of Science 80 (5):1170-1181.
    I present a novel approach to the scholarly debate that has arisen with respect to the philosophical import one should infer from scientific accounts of phase transitions by appealing to a distinction between representation understood as denotation, and faithful representation understood as a type of guide to ontology. It is argued that the entire debate is misguided, for it stems from a pseudo-paradox that does not license the type of claims made by scholars and that what is really interesting about (...)
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   26 citations  
  • Scientific misrepresentation and guides to ontology: the need for representational code and contents.Elay Shech - 2015 - Synthese 192 (11):3463-3485.
    In this paper I show how certain requirements must be set on any tenable account of scientific representation, such as the requirement allowing for misrepresentation. I then continue to argue that two leading accounts of scientific representation— the inferential account and the interpretational account—are flawed for they do not satisfy such requirements. Through such criticism, and drawing on an analogy from non-scientific representation, I also sketch the outline of a superior account. In particular, I propose to take epistemic representations to (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Philosophical Issues Concerning Phase Transitions and Anyons: Emergence, Reduction, and Explanatory Fictions.Elay Shech - 2019 - Erkenntnis 84 (3):585-615.
    Various claims regarding intertheoretic reduction, weak and strong notions of emergence, and explanatory fictions have been made in the context of first-order thermodynamic phase transitions. By appealing to John Norton’s recent distinction between approximation and idealization, I argue that the case study of anyons and fractional statistics, which has received little attention in the philosophy of science literature, is more hospitable to such claims. In doing so, I also identify three novel roles that explanatory fictions fulfill in science. Furthermore, I (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   7 citations  
  • Infinite idealizations in physics.Elay Shech - 2018 - Philosophy Compass 13 (9):e12514.
    In this essay, I provide an overview of the debate on infinite and essential idealizations in physics. I will first present two ostensible examples: phase transitions and the Aharonov– Bohm effect. Then, I will describe the literature on the topic as a debate between two positions: Essentialists claim that idealizations are essential or indispensable for scientific accounts of certain physical phenomena, while dispensabilists maintain that idealizations are dispensable from mature scientific theory. I will also identify some attempts at finding a (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   15 citations  
  • Physical emergence, diachronic and synchronic.Alexander Rueger - 2000 - Synthese 124 (3):297-322.
    This paper explicates two notions of emergencewhich are based on two ways of distinguishinglevels of properties for dynamical systems.Once the levels are defined, the strategies ofcharacterizing the relation of higher level to lower levelproperties as diachronic and synchronic emergenceare the same. In each case, the higher level properties aresaid to be emergent if they are novel or irreducible with respect to the lower level properties. Novelty andirreducibility are given precise meanings in terms of the effectsthat the change of a bifurcation (...)
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   62 citations  
  • Functional reduction and emergence in the physical sciences.Alexander Rueger - 2006 - Synthese 151 (3):335 - 346.
    Kim’s model of ‘functional reduction’ of properties is shown to fail in a class of cases from physics involving properties at different spatial levels. The diagnosis of this failure leads to a non-reductive account of the relation of micro and macro properties.
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • Had We But World Enough, and Time... But We Don’t!: Justifying the Thermodynamic and Infinite-Time Limits in Statistical Mechanics.Patricia Palacios - 2018 - Foundations of Physics 48 (5):526-541.
    In this paper, I compare the use of the thermodynamic limit in the theory of phase transitions with the infinite-time limit in the explanation of equilibrium statistical mechanics. In the case of phase transitions, I will argue that the thermodynamic limit can be justified pragmatically since the limit behavior also arises before we get to the limit and for values of N that are physically significant. However, I will contend that the justification of the infinite-time limit is less straightforward. In (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   8 citations  
  • The impossible process: Thermodynamic reversibility.John D. Norton - 2016 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 55:43-61.
    Standard descriptions of thermodynamically reversible processes attribute contradictory properties to them: they are in equilibrium yet still change their state. Or they are comprised of non-equilibrium states that are so close to equilibrium that the difference does not matter. One cannot have states that both change and no not change at the same time. In place of this internally contradictory characterization, the term “thermodynamically reversible process” is here construed as a label for a set of real processes of change involving (...)
    Direct download (4 more)  
     
    Export citation  
     
    Bookmark   16 citations  
  • The Dome: An Unexpectedly Simple Failure of Determinism.John D. Norton - 2008 - Philosophy of Science 75 (5):786-798.
    Newton’s equations of motion tell us that a mass at rest at the apex of a dome with the shape specified here can spontaneously move. It has been suggested that this indeterminism should be discounted since it draws on an incomplete rendering of Newtonian physics, or it is “unphysical,” or it employs illicit idealizations. I analyze and reject each of these reasons. †To contact the author, please write to: Department of History and Philosophy of Science, University of Pittsburgh, Pittsburgh, PA (...)
    Direct download (13 more)  
     
    Export citation  
     
    Bookmark   83 citations  
  • Approximation and Idealization: Why the Difference Matters.John D. Norton - 2012 - Philosophy of Science 79 (2):207-232.
    It is proposed that we use the term “approximation” for inexact description of a target system and “idealization” for another system whose properties also provide an inexact description of the target system. Since systems generated by a limiting process can often have quite unexpected, even inconsistent properties, familiar limit systems used in statistical physics can fail to provide idealizations, but are merely approximations. A dominance argument suggests that the limiting idealizations of statistical physics should be demoted to approximations.
    Direct download (12 more)  
     
    Export citation  
     
    Bookmark   118 citations  
  • Emergent Physics and Micro-Ontology.Margaret Morrison - 2012 - Philosophy of Science 79 (1):141-166.
    This article examines ontological/dynamical aspects of emergence, specifically the micro-macro relation in cases of universal behavior. I discuss superconductivity as an emergent phenomenon, showing why microphysical features such as Cooper pairing are not necessary for deriving characteristic properties such as infinite conductivity. I claim that the difficulties surrounding the thermodynamic limit in explaining phase transitions can be countered by showing how renormalization group techniques facilitate an understanding of the physics behind the mathematics, enabling us to clarify epistemic and ontological aspects (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   65 citations  
  • Perspectival Modeling.Michela Massimi - 2018 - Philosophy of Science 85 (3):335-359.
    The goal of this article is to address the problem of inconsistent models and the challenge it poses for perspectivism. I analyze the argument, draw attention to some hidden premises behind it, and deflate them. Then I introduce the notion of perspectival models as a distinctive class of modeling practices whose primary function is exploratory. I illustrate perspectival modeling with two examples taken from contemporary high-energy physics at the Large Hadron Collider at the European Organization for Nuclear Research, which are (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   38 citations  
  • Idealization and abstraction: refining the distinction.Arnon Levy - 2018 - Synthese 198 (Suppl 24):5855-5872.
    Idealization and abstraction are central concepts in the philosophy of science and in science itself. My goal in this paper is suggest an account of these concepts, building on and refining an existing view due to Jones Idealization XII: correcting the model. Idealization and abstraction in the sciences, vol 86. Rodopi, Amsterdam, pp 173–217, 2005) and Godfrey-Smith Mapping the future of biology: evolving concepts and theories. Springer, Berlin, 2009). On this line of thought, abstraction—which I call, for reasons to be (...)
    No categories
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   38 citations  
  • On Norton’s dome.Jon Pérez Laraudogoitia - 2013 - Synthese 190 (14):2925-2941.
    Norton’s very simple case of indeterminism in classical mechanics has given rise to a literature critical of his result. I am interested here in posing a new objection different from the ones made to date. The first section of the paper expounds the essence of Norton’s model and my criticism of it. I then propose a specific modification in the absence of gravitational interaction. The final section takes into consideration a surprising consequence for classical mechanics from the new model introduced (...)
    Direct download (3 more)  
     
    Export citation  
     
    Bookmark   4 citations  
  • Curie’s Principle and spontaneous symmetry breaking.John Earman - 2004 - International Studies in the Philosophy of Science 18 (2 & 3):173 – 198.
    In 1894 Pierre Curie announced what has come to be known as Curie's Principle: the asymmetry of effects must be found in their causes. In the same publication Curie discussed a key feature of what later came to be known as spontaneous symmetry breaking: the phenomena generally do not exhibit the symmetries of the laws that govern them. Philosophers have long been interested in the meaning and status of Curie's Principle. Only comparatively recently have they begun to delve into the (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   65 citations  
  • Scientific representation, interpretation, and surrogative reasoning.Gabriele Contessa - 2007 - Philosophy of Science 74 (1):48-68.
    In this paper, I develop Mauricio Suárez’s distinction between denotation, epistemic representation, and faithful epistemic representation. I then outline an interpretational account of epistemic representation, according to which a vehicle represents a target for a certain user if and only if the user adopts an interpretation of the vehicle in terms of the target, which would allow them to perform valid (but not necessarily sound) surrogative inferences from the model to the system. The main difference between the interpretational conception I (...)
    Direct download (10 more)  
     
    Export citation  
     
    Bookmark   107 citations  
  • Syntactic Structures.Noam Chomsky - 1957 - Mouton.
    Noam Chomsky's book on syntactic structures is a serious attempts on the part of a linguist to construct within the tradition of scientific theory-construction ...
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   690 citations  
  • Syntactic Structures.J. F. Staal - 1966 - Journal of Symbolic Logic 31 (2):245-251.
    Direct download  
     
    Export citation  
     
    Bookmark   449 citations  
  • Taking Thermodynamics Too Seriously.Craig Callender - 2001 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 32 (4):539-553.
    This paper discusses the mistake of understanding the laws and concepts of thermodynamics too literally in the foundations of statistical mechanics. Arguing that this error is still made in subtle ways, the article explores its occurrence in three examples: the Second Law, the concept of equilibrium and the definition of phase transitions.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   98 citations  
  • Less is Different: Emergence and Reduction Reconciled. [REVIEW]Jeremy Butterfield - 2011 - Foundations of Physics 41 (6):1065-1135.
    This is a companion to another paper. Together they rebut two widespread philosophical doctrines about emergence. The first, and main, doctrine is that emergence is incompatible with reduction. The second is that emergence is supervenience; or more exactly, supervenience without reduction.In the other paper, I develop these rebuttals in general terms, emphasising the second rebuttal. Here I discuss the situation in physics, emphasising the first rebuttal. I focus on limiting relations between theories and illustrate my claims with four examples, each (...)
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   147 citations  
  • On the explanatory role of mathematics in empirical science.Robert W. Batterman - 2010 - British Journal for the Philosophy of Science 61 (1):1-25.
    This paper examines contemporary attempts to explicate the explanatory role of mathematics in the physical sciences. Most such approaches involve developing so-called mapping accounts of the relationships between the physical world and mathematical structures. The paper argues that the use of idealizations in physical theorizing poses serious difficulties for such mapping accounts. A new approach to the applicability of mathematics is proposed.
    Direct download (13 more)  
     
    Export citation  
     
    Bookmark   124 citations  
  • Critical phenomena and breaking drops: Infinite idealizations in physics.Robert Batterman - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (2):225-244.
    Thermodynamics and Statistical Mechanics are related to one another through the so-called "thermodynamic limit'' in which, roughly speaking the number of particles becomes infinite. At critical points (places of physical discontinuity) this limit fails to be regular. As a result, the "reduction'' of Thermodynamics to Statistical Mechanics fails to hold at such critical phases. This fact is key to understanding an argument due to Craig Callender to the effect that the thermodynamic limit leads to mistakes in Statistical Mechanics. I discuss (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   97 citations  
  • Asymptotics and the role of minimal models.Robert W. Batterman - 2002 - British Journal for the Philosophy of Science 53 (1):21-38.
    A traditional view of mathematical modeling holds, roughly, that the more details of the phenomenon being modeled that are represented in the model, the better the model is. This paper argues that often times this ‘details is better’ approach is misguided. One ought, in certain circumstances, to search for an exactly solvable minimal model—one which is, essentially, a caricature of the physics of the phenomenon in question.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   94 citations  
  • Understanding thermodynamic singularities: Phase transitions, data, and phenomena.Sorin Bangu - 2009 - Philosophy of Science 76 (4):488-505.
    According to standard (quantum) statistical mechanics, the phenomenon of a phase transition, as described in classical thermodynamics, cannot be derived unless one assumes that the system under study is infinite. This is naturally puzzling since real systems are composed of a finite number of particles; consequently, a well‐known reaction to this problem was to urge that the thermodynamic definition of phase transitions (in terms of singularities) should not be “taken seriously.” This article takes singularities seriously and analyzes their role by (...)
    Direct download (6 more)  
     
    Export citation  
     
    Bookmark   28 citations  
  • Reconstructing Reality: Models, Mathematics, and Simulations.Margaret Morrison - 2014 - New York, US: Oup Usa.
    The book examines issues related to the way modeling and simulation enable us to reconstruct aspects of the world we are investigating. It also investigates the processes by which we extract concrete knowledge from those reconstructions and how that knowledge is legitimated.
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   95 citations  
  • How to Do Science with Models: A Philosophical Primer.Axel Gelfert - 2016 - Cham: Springer.
    Taking scientific practice as its starting point, this book charts the complex territory of models used in science. It examines what scientific models are and what their function is. Reliance on models is pervasive in science, and scientists often need to construct models in order to explain or predict anything of interest at all. The diversity of kinds of models one finds in science – ranging from toy models and scale models to theoretical and mathematical models – has attracted attention (...)
  • Interpreting Quantum Theories: The Art of the Possible.Laura Ruetsche - 2011 - Oxford, GB: Oxford University Press UK.
    Philosophers of quantum mechanics have generally addressed exceedingly simple systems. Laura Ruetsche offers a much-needed study of the interpretation of more complicated systems, and an underexplored family of physical theories, such as quantum field theory and quantum statistical mechanics, showing why they repay philosophical attention. She guides those familiar with the philosophy of ordinary QM into the philosophy of 'QM infinity', by presenting accessible introductions to relevant technical notions and the foundational questions they frame--and then develops and defends answers to (...)
  • Models as Mediators: Perspectives on Natural and Social Science.Mary S. Morgan & Margaret Morrison (eds.) - 1999 - Cambridge University Press.
    Models as Mediators discusses the ways in which models function in modern science, particularly in the fields of physics and economics. Models play a variety of roles in the sciences: they are used in the development, exploration and application of theories and in measurement methods. They also provide instruments for using scientific concepts and principles to intervene in the world. The editors provide a framework which covers the construction and function of scientific models, and explore the ways in which they (...)
     
    Export citation  
     
    Bookmark   350 citations  
  • Reexamining the Quantum-Classical Relation: Beyond Reductionism and Pluralism.Alisa Bokulich - 2008 - Cambridge University Press.
    Classical mechanics and quantum mechanics are two of the most successful scientific theories ever discovered, and yet how they can describe the same world is far from clear: one theory is deterministic, the other indeterministic; one theory describes a world in which chaos is pervasive, the other a world in which chaos is absent. Focusing on the exciting field of 'quantum chaos', this book reveals that there is a subtle and complex relation between classical and quantum mechanics. It challenges the (...)
    Direct download  
     
    Export citation  
     
    Bookmark   74 citations  
  • The devil in the details: asymptotic reasoning in explanation, reduction, and emergence.Robert W. Batterman - 2002 - New York: Oxford University Press.
    Robert Batterman examines a form of scientific reasoning called asymptotic reasoning, arguing that it has important consequences for our understanding of the scientific process as a whole. He maintains that asymptotic reasoning is essential for explaining what physicists call universal behavior. With clarity and rigor, he simplifies complex questions about universal behavior, demonstrating a profound understanding of the underlying structures that ground them. This book introduces a valuable new method that is certain to fill explanatory gaps across disciplines.
  • Idealization and abstraction: A framework.Martin R. Jones - 2005 - Poznan Studies in the Philosophy of the Sciences and the Humanities 86 (1):173-218.
     
    Export citation  
     
    Bookmark   82 citations  
  • Turn and Face the Strange... Ch-ch-changes: Philosophical Questions Raised by Phase Transitions.Tarun Menon & Craig Callender - 2013 - In Robert W. Batterman (ed.), The Oxford Handbook of Philosophy of Physics. Oxford University Press.
    Phase transitions are an important instance of putatively emergent behavior. Unlike many things claimed emergent by philosophers, the alleged emergence of phase transitions stems from both philosophical and scientific arguments. Here we focus on the case for emergence built from physics, in particular, arguments based upon the infinite idealization invoked in the statistical mechanical treatment of phase transitions. After teasing apart several challenges, we defend the idea that phase transitions are best thought of as conceptually novel, but not ontologically or (...)
    Direct download (2 more)  
     
    Export citation  
     
    Bookmark   31 citations  
  • Phase Transitions: A Challenge for Reductionism?Patricia Palacios - unknown
    In this paper, I analyze the extent to which classical phase transitions, especially continuous phase transitions, impose a challenge for reduction- ism. My main contention is that classical phase transitions are compatible with reduction, at least with the notion of limiting reduction, which re- lates the behavior of physical quantities in different theories under certain limiting conditions. I argue that this conclusion follows even after rec- ognizing the existence of two infinite limits involved in the treatment of continuous phase transitions.
    No categories
    Direct download (5 more)  
     
    Export citation  
     
    Bookmark   4 citations