Switch to: Citations

Add references

You must login to add references.
  1. Interpreting quantum field theory.Laura Ruetsche - 2002 - Philosophy of Science 69 (2):348-378.
    The availability of unitarily inequivalent representations of the canonical commutation relations constituting a quantization of a classical field theory raises questions about how to formulate and pursue quantum field theory. In a minimally technical way, I explain how these questions arise and how advocates of the Hilbert space and of the algebraic approaches to quantum theory might answer them. Where these answers differ, I sketch considerations for and against each approach, as well as considerations which might temper their apparent rivalry.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   41 citations  
  • Johnny’s So Long at the Ferromagnet.Laura Ruetsche - 2006 - Philosophy of Science 73 (5):473-486.
    Starting from the standard quantum formalism for a single spin 1/2 system (e.g., an electron), this essay develops a model rich enough not only to afford an explication of symmetry breaking but also to frame questions about how to circumscribe physical possibility on behalf of theories that countenance symmetry breaking.
    Direct download (7 more)  
     
    Export citation  
     
    Bookmark   23 citations  
  • Explaining quantum spontaneous symmetry breaking.Chuang Liu & Gérard G. Emch - 2005 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (1):137-163.
    Two alternative accounts of quantum spontaneous symmetry breaking (SSB) are compared and one of them, the decompositional account in the algebraic approach, is argued to be superior for understanding quantum SSB. Two exactly solvable models are given as applications of our account -- the Weiss-Heisenberg model for ferromagnetism and the BCS model for superconductivity. Finally, the decompositional account is shown to be more conducive to the causal explanation of quantum SSB.
    Direct download (8 more)  
     
    Export citation  
     
    Bookmark   25 citations  
  • Broken Symmetry and Spacetime.David John Baker - 2011 - Philosophy of Science 78 (1):128-148.
    The phenomenon of broken spacetime symmetry in the quantum theory of infinite systems forces us to adopt an unorthodox ontology. We must abandon the standard conception of the physical meaning of these symmetries, or else deny the attractive “liberal” notion of which physical quantities are significant. A third option, more attractive but less well understood, is to abandon the existing (Halvorson-Clifton) notion of intertranslatability for quantum theories.
    Direct download (11 more)  
     
    Export citation  
     
    Bookmark   20 citations  
  • Fields, Particles, and Curvature: Foundations and Philosophical Aspects of Quantum Field Theory in Curved Spacetime.Aristidis Arageorgis - 1995 - Dissertation, University of Pittsburgh
    The physical, mathematical, and philosophical foundations of the quantum theory of free Bose fields in fixed general relativistic spacetimes are examined. It is argued that the theory is logically and mathematically consistent whereas semiclassical prescriptions for incorporating the back-reaction of the quantum field on the geometry lead to inconsistencies. Still, the relations and heuristic value of the semiclassical approach to canonical and covariant schemes of quantum gravity-plus-matter are assessed. Both conventional and rigorous formulations of the theory and of its principal (...)
     
    Export citation  
     
    Bookmark   17 citations