References in:
Add references
You must login to add references.
|
|
Piccinini and Craver (Synthese 183:283–311, 2011) argue for the surprising view that psychological explanation, properly understood, is a species of mechanistic explanation. This contrasts with the ‘received view’ (due, primarily, to Cummins and Fodor) which maintains a sharp distinction between psychological explanation and mechanistic explanation. The former is typically construed as functional analysis, the analysis of some psychological capacity into an organized series of subcapacities without specifying any of the structural features that underlie the explanandum capacity. The latter idea, of (...) |
|
one takes to be the most salient, any pair could be judged more similar to each other than to the third. Goodman uses this second problem to showthat there can be no context-free similarity metric, either in the trivial case or in a scientifically ... |
|
Ever since David Hume, empiricists have barred powers and capacities from nature. In this book Cartwright argues that capacities are essential in our scientific world, and, contrary to empiricist orthodoxy, that they can meet sufficiently strict demands for testability. Econometrics is one discipline where probabilities are used to measure causal capacities, and the technology of modern physics provides several examples of testing capacities (such as lasers). Cartwright concludes by applying the lessons of the book about capacities and probabilities to the (...) |
|
Gualtiero Piccinini articulates and defends a mechanistic account of concrete, or physical, computation. A physical system is a computing system just in case it is a mechanism one of whose functions is to manipulate vehicles based solely on differences between different portions of the vehicles according to a rule defined over the vehicles. Physical Computation discusses previous accounts of computation and argues that the mechanistic account is better. Many kinds of computation are explicated, such as digital vs. analog, serial vs. (...) |
|
The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change. |
|
We provide an explicit taxonomy of legitimate kinds of abstraction within constitutive explanation. We argue that abstraction is an inherent aspect of adequate mechanistic explanation. Mechanistic explanations—even ideally complete ones—typically involve many kinds of abstraction and therefore do not require maximal detail. Some kinds of abstraction play the ontic role of identifying the specific complex components, subsets of causal powers, and organizational relations that produce a suitably general phenomenon. Therefore, abstract constitutive explanations are both legitimate and mechanistic. |
|
Proponents of mechanistic explanation all acknowledge the importance of organization. But they have also tended to emphasize specificity with respect to parts and operations in mechanisms. We argue that in understanding one important mode of organization—patterns of causal connectivity—a successful explanatory strategy abstracts from the specifics of the mechanism and invokes tools such as those of graph theory to explain how mechanisms with a particular mode of connectivity will behave. We discuss the connection between organization, abstraction, and mechanistic explanation and (...) |
|
This paper offers an account of what it is for a physical system to be a computing mechanism—a system that performs computations. A computing mechanism is a mechanism whose function is to generate output strings from input strings and (possibly) internal states, in accordance with a general rule that applies to all relevant strings and depends on the input strings and (possibly) internal states for its application. This account is motivated by reasons endogenous to the philosophy of computing, namely, doing (...) |
|
This paper argues that the difference between contemporary software intensive scientific practice and more traditional non-software intensive varieties results from the characteristically high conditionality of software. We explain why the path complexity of programs with high conditionality imposes limits on standard error correction techniques and why this matters. While it is possible, in general, to characterize the error distribution in inquiry that does not involve high conditionality, we cannot characterize the error distribution in inquiry that depends on software. Software intensive (...) |
|
The specification and implementation of computational artefacts occurs throughout the discipline of computer science. Consequently, unpacking its nature should constitute one of the core areas of the philosophy of computer science. This paper presents a conceptual analysis of the central role of specification in the discipline. |
|
Model checking, a prominent formal method used to predict and explain the behaviour of software and hardware systems, is examined on the basis of reflective work in the philosophy of science concerning the ontology of scientific theories and model-based reasoning. The empirical theories of computational systems that model checking techniques enable one to build are identified, in the light of the semantic conception of scientific theories, with families of models that are interconnected by simulation relations. And the mappings between these (...) |
|
Explanations in the life sciences frequently involve presenting a model of the mechanism taken to be responsible for a given phenomenon. Such explanations depart in numerous ways from nomological explanations commonly presented in philosophy of science. This paper focuses on three sorts of differences. First, scientists who develop mechanistic explanations are not limited to linguistic representations and logical inference; they frequently employ dia- grams to characterize mechanisms and simulations to reason about them. Thus, the epistemic resources for presenting mechanistic explanations (...) |
|
We characterize abstraction in computer science by first comparing the fundamental nature of computer science with that of its cousin mathematics. We consider their primary products, use of formalism, and abstraction objectives, and find that the two disciplines are sharply distinguished. Mathematics, being primarily concerned with developing inference structures, has information neglect as its abstraction objective. Computer science, being primarily concerned with developing interaction patterns, has information hiding as its abstraction objective. We show that abstraction through information hiding is a (...) |
|
|
|
We sketch a framework for building a unified science of cognition. This unification is achieved by showing how functional analyses of cognitive capacities can be integrated with the multilevel mechanistic explanations of neural systems. The core idea is that functional analyses are sketches of mechanisms , in which some structural aspects of a mechanistic explanation are omitted. Once the missing aspects are filled in, a functional analysis turns into a full-blown mechanistic explanation. By this process, functional analyses are seamlessly integrated (...) |
|
Taken at face value, a programming language is defined by a formal grammar. But, clearly, there is more to it. By themselves, the naked strings of the language do not determine when a program is correct relative to some specification. For this, the constructs of the language must be given some semantic content. Moreover, to be employed to generate physical computations, a programming language must have a physical implementation. How are we to conceptualize this complex package? Ontologically, what kind of (...) |
|
Philosophers of science increasingly recognize the importance of idealization: the intentional introduction of distortion into scientific theories. Yet this recognition has not yielded consensus about the nature of idealization. e literature of the past thirty years contains disparate characterizations and justifications, but little evidence of convergence towards a common position. |
|
|
|
|
|
The phenomenon of digital computation is explained (often differently) in computer science, computer engineering and more broadly in cognitive science. Although the semantics and implications of malfunctions have received attention in the philosophy of biology and philosophy of technology, errors in computational systems remain of interest only to computer science. Miscomputation has not gotten the philosophical attention it deserves. Our paper fills this gap by offering a taxonomy of miscomputations. This taxonomy is underpinned by a conceptual analysis of the design (...) |
|
Questions concerning the epistemological status of computer science are, in this paper, answered from the point of view of the formal verification framework. State space reduction techniques adopted to simplify computational models in model checking are analysed in terms of Aristotelian abstractions and Galilean idealizations characterizing the inquiry of empirical systems. Methodological considerations drawn here are employed to argue in favour of the scientific understanding of computer science as a discipline. Specifically, reduced models gained by Dataion are acknowledged as Aristotelian (...) |
|
In this paper I offer an analysis of causation based upon a theory of mechanisms-complex systems whose internal parts interact to produce a system's external behavior. I argue that all but the fundamental laws of physics can be explained by reference to mechanisms. Mechanisms provide an epistemologically unproblematic way to explain the necessity which is often taken to distinguish laws from other generalizations. This account of necessity leads to a theory of causation according to which events are causally related when (...) |
|
Artefacts do not always do what they are supposed to, due to a variety of reasons, including manufacturing problems, poor maintenance, and normal wear-and-tear. Since software is an artefact, it should be subject to malfunctioning in the same sense in which other artefacts can malfunction. Yet, whether software is on a par with other artefacts when it comes to malfunctioning crucially depends on the abstraction used in the analysis. We distinguish between “negative” and “positive” notions of malfunction. A negative malfunction, (...) |
|
In this paper I apply the mechanistic account of explanation to engineering science. I discuss two ways in which this extension offers further development of the mechanistic view. First, functional individuation of mechanisms in engineering science proceeds by means of two distinct sub types of role function, behavior function and effect function, rather than role function simpliciter. Second, it offers refined assessment of the explanatory power of mechanistic explanations. It is argued that in the context of malfunction explanations of technical (...) |
|
Explanations in the life sciences frequently involve presenting a model of the mechanism taken to be responsible for a given phenomenon. Such explanations depart in numerous ways from nomological explanations commonly presented in philosophy of science. This paper focuses on three sorts of differences. First, scientists who develop mechanistic explanations are not limited to linguistic representations and logical inference; they frequently employ diagrams to characterize mechanisms and simulations to reason about them. Thus, the epistemic resources for presenting mechanistic explanations are (...) |
|
|
|
|
|
|