Optimization of the Rapid Design System for Arts and Crafts Based on Big Data and 3D Technology

Complexity 2021:1-10 (2021)
  Copy   BIBTEX

Abstract

In this paper, to solve the problem of slow design of arts and crafts and to improve design efficiency and aesthetics, the existing big data and 3D technology are used to conduct an in-depth analysis of the optimization of the rapid design system of arts and crafts machine salt baking. In the system requirement analysis, the functional modules of this system are identified as nine functional modules such as design terminology management system and external information import function according to the actual usage requirements. In the system design, the overall structure design, database design, and functional module design of the system are comprehensively elaborated, and the key issues such as 3D display and home layout generation algorithm based on reinforcement learning are analyzed and designed. In the implementation part of the system, the overall construction of the system and the composition of functional modules are introduced in detail and the main functional modules of the system are presented with interface diagrams. In the system implementation part, the overall system construction and functional module composition are introduced in detail, the main functional modules of the system are shown with interface diagrams, codes, and algorithms, and the specific implementation process of 3D display and soft layout algorithms are also explained in detail. The process of Surface Mount Technology big data processing and analysis is designed, and the design of SMT production line data collection scheme and real-time data processing architecture is completed. Based on the characteristics of SMT production line data, the K-means algorithm is used to detect data outliers and verify the accuracy of the method; also, the Spark-based association rule printing parameter recommendation model is designed, and the efficiency of the Apriori algorithm is significantly improved by parallelization.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,219

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2021-05-21

Downloads
6 (#1,389,828)

6 months
6 (#431,022)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references