Chaitin interview for simply gödel website


Authors
Palle Yourgrau
Brandeis University
Abstract
Gödel's first incompleteness theorem shows that no axiomatic theory can prove all mathematical truths, while Gödel's second incompleteness theorem shows that a specific mathematical result is unprovable. A famous mathematician of the time, David Hilbert, had asked for a proof that an important axiomatic theory was consistent, and Godel showed that such a proof could not be carried out within the axiomatic theory itself, and presumably could therefore not be established in a convincing way outside of the theory either.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 72,564
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Analytics

Added to PP index
2009-02-13

Total views
81 ( #146,434 of 2,533,480 )

Recent downloads (6 months)
1 ( #391,480 of 2,533,480 )

How can I increase my downloads?

Downloads

My notes