Robust Exponential Stability Analysis of Switched Neural Networks with Interval Parameter Uncertainties and Time Delays

Complexity 2018:1-16 (2018)
  Copy   BIBTEX


In this paper, the stability of switched neural networks with interval parameter uncertainties and time delays is investigated. First, the conditions for the existence and uniqueness of the equilibrium point of the system are discussed. Second, the average dwell time approach and M-matrix property are employed to obtain conditions to ensure the globally exponential stability of the delayed SNNs under constrained switching. Third, by resorting to inequality technique and the idea of vector Lyapunov function, sufficient condition to ensure the robust exponential stability of the delayed SNNs under arbitrary switching is derived. The form of the constructed Lyapunov functions is simple, which has certain commonality in studying delayed SNNs, and the proposed results not only are explicit but also reveal the relationship between the constrained switching and the arbitrary switching of the SNNs. Finally, two numerical examples are presented to illustrate the effectiveness and less conservativeness of the main results compared with the existing literature.



    Upload a copy of this work     Papers currently archived: 77,916

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles


Added to PP

12 (#813,496)

6 months
1 (#485,121)

Historical graph of downloads
How can I increase my downloads?