Nowy postulat teorii mnogości – aksjomat Leibniza-Mycielskiego

Filozofia Nauki 18 (3) (2010)
  Copy   BIBTEX


In this article we will present the Leibniz-Mycielski axiom (LM) of set theory (ZF) introduced several years ago by Jan Mycielski as an additional axiom of set theory. This new postulate formalizes the so-called Leibniz Law (LL) which states that there are no two distinct indiscernible objects. From the Ehrenfeucht-Mostowski theorem it follows that every theory which has an infinite model has a model with indiscernibles. The new LM axiom states that there are infinite models without indis-cernibles. These models are called Leibnizian models of set theory. We will show that this additional axiom is equivalent to some choice principles within the axio-matic set theory. We will also indicate that this axiom is derivable from the axiom which states that all sets are ordinal definable (V=OD) within ZF. Finally, we will explain why the process of language skolemization implies the existence of indis-cernibles. In our considerations we will follow the ontological and epistemological paradigm of investigations



    Upload a copy of this work     Papers currently archived: 76,101

External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles


Added to PP


6 months

Historical graph of downloads

Sorry, there are not enough data points to plot this chart.
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references