Weak systems of determinacy and arithmetical quasi-inductive definitions

Journal of Symbolic Logic 76 (2):418 - 436 (2011)
  Copy   BIBTEX

Abstract

We locate winning strategies for various ${\mathrm{\Sigma }}_{3}^{0}$ -games in the L-hierarchy in order to prove the following: Theorem 1. KP+Σ₂-Comprehension $\vdash \exists \alpha L_{\alpha}\ models"\Sigma _{2}-{\bf KP}+\Sigma _{3}^{0}-\text{Determinacy}."$ Alternatively: ${\mathrm{\Pi }}_{3}^{1}\text{\hspace{0.17em}}-{\mathrm{C}\mathrm{A}}_{0}\phantom{\rule{0ex}{0ex}}$ "there is a β-model of ${\mathrm{\Delta }}_{3}^{1}-{\mathrm{C}\mathrm{A}}_{0}\text{\hspace{0.17em}}\text{\hspace{0.17em}}+\text{\hspace{0.17em}}{\mathrm{\Sigma }}_{3}^{0}$ -Determinacy." The implication is not reversible. (The antecedent here may be replaced with ${\mathrm{\Pi }}_{3}^{1}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left({\mathrm{\Pi }}_{3}^{1}\right)-{\mathrm{C}\mathrm{A}}_{0}:\text{\hspace{0.17em}}{\mathrm{\Pi }}_{3}^{1}$ instances of Comprehension with only ${\mathrm{\Pi }}_{3}^{1}$ -lightface definable parameters—or even weaker theories.) Theorem 2. KP +Δ₂-Comprehension +Σ₂-Replacement + ${\mathrm{\Sigma }}_{3}^{0}\phantom{\rule{0ex}{0ex}}$ -Determinacy. (Here AQI is the assertion that every arithmetical quasi-inductive definition converges.) Alternatively: $\Delta _{3}^{1}{\rm CA}_{0}+{\rm AQI}\nvdash \Sigma _{3}^{0}$ -Determinacy. Hence the theories: ${\mathrm{\Pi }}_{3}^{1}-{\mathrm{C}\mathrm{A}}_{0},\text{\hspace{0.17em}}{\mathrm{\Delta }}_{3}^{1}-{\mathrm{C}\mathrm{A}}_{0}+\text{\hspace{0.17em}}{\mathrm{\Sigma }}_{3}^{0}-\mathrm{D}\mathrm{e}\mathrm{t}\phantom{\rule{0ex}{0ex}}$ -Det, ${\mathrm{\Delta }}_{3}^{1}-{\mathrm{C}\mathrm{A}}_{0}+\mathrm{A}\mathrm{Q}\mathrm{I}$ , and ${\mathrm{\Delta }}_{3}^{1}-{\mathrm{C}\mathrm{A}}_{0}\phantom{\rule{0ex}{0ex}}$ are in strictly descending order of strength

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 76,391

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Determinacy in strong cardinal models.P. D. Welch - 2011 - Journal of Symbolic Logic 76 (2):719 - 728.
Necessary use of [image] induction in a reversal.Itay Neeman - 2011 - Journal of Symbolic Logic 76 (2):561 - 574.
The veblen functions for computability theorists.Alberto Marcone & Antonio Montalbán - 2011 - Journal of Symbolic Logic 76 (2):575 - 602.
Diamonds, uniformization.Saharon Shelah - 1984 - Journal of Symbolic Logic 49 (4):1022-1033.
A hierarchy of tree-automatic structures.Olivier Finkel & Stevo Todorčević - 2012 - Journal of Symbolic Logic 77 (1):350-368.
On the jump classes of noncuppable enumeration degrees.Charles M. Harris - 2011 - Journal of Symbolic Logic 76 (1):177 - 197.
Elementary Cuts in Saturated Models of Peano Arithmetic.James H. Schmerl - 2012 - Notre Dame Journal of Formal Logic 53 (1):1-13.

Analytics

Added to PP
2013-09-30

Downloads
12 (#806,054)

6 months
1 (#451,971)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

Games for truth.P. D. Welch - 2009 - Bulletin of Symbolic Logic 15 (4):410-427.
Guest Editors’ Introduction.Riccardo Bruni & Shawn Standefer - 2019 - Journal of Philosophical Logic 48 (1):1-9.
Reverse mathematics: the playground of logic.Richard A. Shore - 2010 - Bulletin of Symbolic Logic 16 (3):378-402.
Paradoxes and contemporary logic.Andrea Cantini - 2008 - Stanford Encyclopedia of Philosophy.
Determinacy in third order arithmetic.Sherwood Hachtman - 2017 - Annals of Pure and Applied Logic 168 (11):2008-2021.

View all 10 citations / Add more citations

References found in this work

Notes on naive semantics.Hans Herzberger - 1982 - Journal of Philosophical Logic 11 (1):61 - 102.
A revenge-immune solution to the semantic paradoxes.Hartry Field - 2003 - Journal of Philosophical Logic 32 (2):139-177.
An ordinal analysis of parameter free Π1 2-comprehension.Michael Rathjen - 2005 - Archive for Mathematical Logic 44 (3):263-362.
An ordinal analysis of stability.Michael Rathjen - 2005 - Archive for Mathematical Logic 44 (1):1-62.
Weak axioms of determinacy and subsystems of analysis II.Kazuyuki Tanaka - 1991 - Annals of Pure and Applied Logic 52 (1-2):181-193.

Add more references