Weak systems of determinacy and arithmetical quasi-inductive definitions
Journal of Symbolic Logic 76 (2):418 - 436 (2011)
Abstract
We locate winning strategies for various ${\mathrm{\Sigma }}_{3}^{0}$ -games in the L-hierarchy in order to prove the following: Theorem 1. KP+Σ₂-Comprehension $\vdash \exists \alpha L_{\alpha}\ models"\Sigma _{2}-{\bf KP}+\Sigma _{3}^{0}-\text{Determinacy}."$ Alternatively: ${\mathrm{\Pi }}_{3}^{1}\text{\hspace{0.17em}}-{\mathrm{C}\mathrm{A}}_{0}\phantom{\rule{0ex}{0ex}}$ "there is a β-model of ${\mathrm{\Delta }}_{3}^{1}-{\mathrm{C}\mathrm{A}}_{0}\text{\hspace{0.17em}}\text{\hspace{0.17em}}+\text{\hspace{0.17em}}{\mathrm{\Sigma }}_{3}^{0}$ -Determinacy." The implication is not reversible. (The antecedent here may be replaced with ${\mathrm{\Pi }}_{3}^{1}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\left({\mathrm{\Pi }}_{3}^{1}\right)-{\mathrm{C}\mathrm{A}}_{0}:\text{\hspace{0.17em}}{\mathrm{\Pi }}_{3}^{1}$ instances of Comprehension with only ${\mathrm{\Pi }}_{3}^{1}$ -lightface definable parameters—or even weaker theories.) Theorem 2. KP +Δ₂-Comprehension +Σ₂-Replacement + ${\mathrm{\Sigma }}_{3}^{0}\phantom{\rule{0ex}{0ex}}$ -Determinacy. (Here AQI is the assertion that every arithmetical quasi-inductive definition converges.) Alternatively: $\Delta _{3}^{1}{\rm CA}_{0}+{\rm AQI}\nvdash \Sigma _{3}^{0}$ -Determinacy. Hence the theories: ${\mathrm{\Pi }}_{3}^{1}-{\mathrm{C}\mathrm{A}}_{0},\text{\hspace{0.17em}}{\mathrm{\Delta }}_{3}^{1}-{\mathrm{C}\mathrm{A}}_{0}+\text{\hspace{0.17em}}{\mathrm{\Sigma }}_{3}^{0}-\mathrm{D}\mathrm{e}\mathrm{t}\phantom{\rule{0ex}{0ex}}$ -Det, ${\mathrm{\Delta }}_{3}^{1}-{\mathrm{C}\mathrm{A}}_{0}+\mathrm{A}\mathrm{Q}\mathrm{I}$ , and ${\mathrm{\Delta }}_{3}^{1}-{\mathrm{C}\mathrm{A}}_{0}\phantom{\rule{0ex}{0ex}}$ are in strictly descending order of strengthDOI
10.2178/jsl/1305810756
My notes
Similar books and articles
Determinacy in strong cardinal models.P. D. Welch - 2011 - Journal of Symbolic Logic 76 (2):719 - 728.
Necessary use of [image] induction in a reversal.Itay Neeman - 2011 - Journal of Symbolic Logic 76 (2):561 - 574.
BPFA and projective well-orderings of the reals.Andrés Eduardo Caicedo & Sy-David Friedman - 2011 - Journal of Symbolic Logic 76 (4):1126-1136.
The veblen functions for computability theorists.Alberto Marcone & Antonio Montalbán - 2011 - Journal of Symbolic Logic 76 (2):575 - 602.
Limits on jump inversion for strong reducibilities.Barbara F. Csima, Rod Downey & Keng Meng Ng - 2011 - Journal of Symbolic Logic 76 (4):1287-1296.
A hierarchy of tree-automatic structures.Olivier Finkel & Stevo Todorčević - 2012 - Journal of Symbolic Logic 77 (1):350-368.
On the relation between choice and comprehension principles in second order arithmetic.Andrea Cantini - 1986 - Journal of Symbolic Logic 51 (2):360-373.
On the jump classes of noncuppable enumeration degrees.Charles M. Harris - 2011 - Journal of Symbolic Logic 76 (1):177 - 197.
Elementary Cuts in Saturated Models of Peano Arithmetic.James H. Schmerl - 2012 - Notre Dame Journal of Formal Logic 53 (1):1-13.
Cupping and definability in the local structure of the enumeration degrees.Hristo Ganchev & Mariya I. Soskova - 2012 - Journal of Symbolic Logic 77 (1):133-158.
Borel reducibility and Hölder(α) embeddability between Banach spaces.Longyun Ding - 2012 - Journal of Symbolic Logic 77 (1):224-244.
Plongement dense d'un corps ordonné dans sa clôture réelle.Françoise Delon - 1991 - Journal of Symbolic Logic 56 (3):974-980.
Bounds for the closure ordinals of essentially monotonic increasing functions.Andreas Weiermann - 1993 - Journal of Symbolic Logic 58 (2):664-671.
Analytics
Added to PP
2013-09-30
Downloads
12 (#806,054)
6 months
1 (#451,971)
2013-09-30
Downloads
12 (#806,054)
6 months
1 (#451,971)
Historical graph of downloads
Citations of this work
Guest Editors’ Introduction.Riccardo Bruni & Shawn Standefer - 2019 - Journal of Philosophical Logic 48 (1):1-9.
Reverse mathematics: the playground of logic.Richard A. Shore - 2010 - Bulletin of Symbolic Logic 16 (3):378-402.
Determinacy in third order arithmetic.Sherwood Hachtman - 2017 - Annals of Pure and Applied Logic 168 (11):2008-2021.
References found in this work
A revenge-immune solution to the semantic paradoxes.Hartry Field - 2003 - Journal of Philosophical Logic 32 (2):139-177.
An ordinal analysis of parameter free Π1 2-comprehension.Michael Rathjen - 2005 - Archive for Mathematical Logic 44 (3):263-362.
An ordinal analysis of stability.Michael Rathjen - 2005 - Archive for Mathematical Logic 44 (1):1-62.
Weak axioms of determinacy and subsystems of analysis II.Kazuyuki Tanaka - 1991 - Annals of Pure and Applied Logic 52 (1-2):181-193.