Abstract
The powerset operator, , is an operator which (1) sends sets to sets,(2) is defined by a positive formula and (3) raises the cardinality of its argument, i.e., | (x)|>|x|. As a consequence of (3), has a proper class as least fixed point (the universe itself). In this paper we address the questions: (a) How does contribute to the generation of the class of all positive operators? (b) Are there other operators with the above properties, “independent” of ? Concerning (a) we show that every positive operator is a combination of the identity, powerset, and almost constant operators. This enables one to define what a -independent operator is. Concerning (b) we show that every -independent bounded positive operator is not -like