Neuronal and glial morphology in olfactory systems: Significance for information-processing and underlying developmental mechanisms

Brain and Mind 4 (1):27-49 (2003)
  Copy   BIBTEX

Abstract

The shapes of neurons and glial cells dictate many important aspects of their functions. In olfactory systems, certain architectural features are characteristics of these two cell types across a wide variety of species. The accumulated evidence suggests that these common features may play fundamental roles in olfactoryinformation processing. For instance, the primary olfactory neuropil in most vertebrate and invertebrate olfactory systems is organized into discrete modules called glomeruli. Inside each glomerulus, sensory axons and CNS neurons branch and synapse in patterns that are repeated across species. In many species, moreover, the glomeruli are enveloped by a thin and ordered layer of glial processes. Theglomerular arrangement reflects the processing of odor information in modules that encode the discrete molecular attributes of odorant stimuli being processed. Recent studies of the mechanisms that guide the development of olfactory neurons and glial cells have revealed complex reciprocal interactions between these two cell types, which may be necessary for the establishment of modular compartments. Collectively, the findings reviewed here suggest that specialized cellular architecture plays key functional roles in the detection, analysis, and discrimination of odors at early steps in olfactory processing.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,386

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Analytics

Added to PP
2009-01-28

Downloads
76 (#214,281)

6 months
4 (#800,606)

Historical graph of downloads
How can I increase my downloads?

References found in this work

No references found.

Add more references