Computational Complexity of Polyadic Lifts of Generalized Quantifiers in Natural Language
Linguistics and Philosophy 33 (3):215-250 (2010)
Abstract
We study the computational complexity of polyadic quantifiers in natural language. This type of quantification is widely used in formal semantics to model the meaning of multi-quantifier sentences. First, we show that the standard constructions that turn simple determiners into complex quantifiers, namely Boolean operations, iteration, cumulation, and resumption, are tractable. Then, we provide an insight into branching operation yielding intractable natural language multi-quantifier expressions. Next, we focus on a linguistic case study. We use computational complexity results to investigate semantic distinctions between quantified reciprocal sentences. We show a computational dichotomy<br>between different readings of reciprocity. Finally, we go more into philosophical speculation on meaning, ambiguity and computational complexity. In particular, we investigate a possibility to<br>revise the Strong Meaning Hypothesis with complexity aspects to better account for meaning shifts in the domain of multi-quantifier sentences. The paper not only contributes to the field of the formal<br>semantics but also illustrates how the tools of computational complexity theory might be successfully used in linguistics and philosophy with an eye towards cognitive science.Author's Profile
Reprint years
2011
DOI
10.1007/s10988-010-9076-z
My notes
Similar books and articles
The Computational Complexity of Quantified Reciprocals.Jakub Szymanik - 2009 - In Peter Bosch, David Gabelaia & Jérôme Lang (eds.), Lecture Notes on Artificial Intelligence 5422, Logic, Language, and Computation 7th International Tbilisi Symposium on Logic, Language, and Computation. Springer.
Improving Methodology of Quantifier Comprehension Experiments.Jakub Szymanik & Marcin Zajenkowski - 2009 - Neuropsychologia 47 (12):2682--2683.
Almost All Complex Quantifiers are Simple.Jakub Szymanik - 2010 - In C. Ebert, G. Jäger, M. Kracht & J. Michaelis (eds.), Mathematics of Language 10/11, Lecture Notes in Computer Science 6149. Springer.
Computational complexity of some Ramsey quantifiers in finite models.Marcin Mostowski & Jakub Szymanik - 2007 - Bulletin of Symbolic Logic 13:281--282.
Definability of polyadic lifts of generalized quantifiers.Lauri Hella, Jouko Väänänen & Dag Westerståhl - 1997 - Journal of Logic, Language and Information 6 (3):305-335.
Interpreting tractable versus intractable reciprocal sentences.Oliver Bott, Fabian Schlotterbeck & Jakub Szymanik - forthcoming - In Proceedings of the International Conference on Computational Semantics.
Characterizing Definability of Second-Order Generalized Quantifiers.Juha Kontinen & Jakub Szymanik - 2011 - In L. Beklemishev & R. de Queiroz (eds.), Proceedings of the 18th Workshop on Logic, Language, Information and Computation, Lecture Notes in Artificial Intelligence 6642. Springer.
Quantifiers in TIME and SPACE. Computational Complexity of Generalized Quantifiers in Natural Language.Jakub Szymanik - 2009 - Dissertation, University of Amsterdam
Analytics
Added to PP
2010-04-03
Downloads
177 (#72,795)
6 months
2 (#297,033)
2010-04-03
Downloads
177 (#72,795)
6 months
2 (#297,033)
Historical graph of downloads
Author's Profile
Citations of this work
Exploring the tractability border in epistemic tasks.Cédric Dégremont, Lena Kurzen & Jakub Szymanik - 2014 - Synthese 191 (3):371-408.
Semantics of the Barwise sentence: insights from expressiveness, complexity and inference.Dariusz Kalociński & Michał Tomasz Godziszewski - 2018 - Linguistics and Philosophy 41 (4):423-455.
An Analytic Tableaux Model for Deductive Mastermind Empirically Tested with a Massively Used Online Learning System.Nina Gierasimczuk, Han L. J. van der Maas & Maartje E. J. Raijmakers - 2013 - Journal of Logic, Language and Information 22 (3):297-314.
Iterating semantic automata.Shane Steinert-Threlkeld & I. I. I. Thomas F. Icard - 2013 - Linguistics and Philosophy 36 (2):151-173.
Tractability and the computational mind.Rineke Verbrugge & Jakub Szymanik - 2018 - In Mark Sprevak & Matteo Colombo (eds.), The Routledge Handbook of the Computational Mind. Oxford, UK: pp. 339-353.
References found in this work
Uber Sinn und Bedeutung.Gottlob Frege - 1892 - Zeitschrift für Philosophie Und Philosophische Kritik 100 (1):25-50.
On Computable Numbers, with an Application to the Entscheidungsproblem.Alan Turing - 1936 - Proceedings of the London Mathematical Society 42 (1):230-265.
Begriffsschrift: Eine der arithmetischen nachgebildete Formelsprache des reinen Denkens.Gottlob Frege - 1879 - Halle a.d.S.: Louis Nebert.
Generalized quantifiers and natural language.John Barwise & Robin Cooper - 1981 - Linguistics and Philosophy 4 (2):159--219.