Integrating reinforcement learning, bidding and genetic algorithms

Abstract

This paper presents a GA-based multi-agent reinforce- ment learning bidding approach (GMARLB) for perform- ing multi-agent reinforcement learning. GMARLB inte- grates reinforcement learning, bidding and genetic algo- rithms. The general idea of our multi-agent systems is as follows: There are a number of individual agents in a team, each agent of the team has two modules: Q module and CQ module. Each agent can select actions to be performed at each step, which are done by the Q module. While the CQ module determines at each step whether the agent should continue or relinquish control. Once an agent relinquishes its control, a new agent is selected by bidding algorithms. We applied GA-based GMARLB to the Backgammon game. The experimental results show GMARLB can achieve a su- perior level of performance in game-playing, outperforming PubEval, while the system uses zero built-in knowledge.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 74,389

External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2009-06-13

Downloads
37 (#312,839)

6 months
1 (#416,470)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations