Quadratic residues and $x^3+y^3=z^3$ in models of ${\rm IE}1$ and ${\rm IE}2$
Notre Dame Journal of Formal Logic 34 (3):420-438 (1993)
Abstract
This article has no associated abstract. (fix it)DOI
10.1305/ndjfl/1093634730
My notes
Similar books and articles
Quadratic Residues and x 3 'Superscript' + y 3 'Superscript' + z 3 'Superscript' in Models of Ie 1 'Subscript' and Ie 2 'Subscript'. [REVIEW]Stuart T. Smith - 1993 - Notre Dame Journal of Formal Logic 34 (3):420-438.
Quadratic forms in normal open induction.Margarita Otero - 1993 - Journal of Symbolic Logic 58 (2):456-476.
Models of atypical development must also be models of normal development.Gert Westermann & Denis Mareschal - 2002 - Behavioral and Brain Sciences 25 (6):771-772.
Independence and consistency proofs in quadratic form theory.James E. Baumgartner & Otmar Spinas - 1991 - Journal of Symbolic Logic 56 (4):1195-1211.
Gauss' quadratic reciprocity theorem and mathematical fruitfulness.Audrey Yap - 2011 - Studies in History and Philosophy of Science Part A 42 (3):410-415.
Biological effects of low level radiation: Values, dose-response models, risk estimates.Helen E. Longino - 1989 - Synthese 81 (3):391 - 404.
Analytics
Added to PP
2010-08-24
Downloads
6 (#1,106,014)
6 months
1 (#455,463)
2010-08-24
Downloads
6 (#1,106,014)
6 months
1 (#455,463)
Historical graph of downloads
Citations of this work
Algebraic combinatorics in bounded induction.Joaquín Borrego-Díaz - 2021 - Annals of Pure and Applied Logic 172 (2):102885.