On the Performance of Indirect Encoding Across the Continuum of Regularity


��This paper investigates how an evolutionary al- gorithm with an indirect encoding exploits the property of phenotypic regularity, an important design principle found in natural organisms and engineered designs. We present the first comprehensive study showing that such phenotypic regularity enables an indirect encoding to outperform direct encoding con- trols as problem regularity increases. Such an ability to produce regular solutions that can exploit the regularity of problems is an important prerequisite if evolutionary algorithms are to scale to high-dimensional real-world problems, which typically contain many regularities, both known and unrecognized. The indirect encoding in this case study is HyperNEAT, which evolves artificial neural networks (ANNs) in a manner inspired by concepts from biological development. We demonstrate that, in contrast to two direct encoding controls, HyperNEAT produces both regular behaviors and regular ANNs, which enables HyperNEAT to significantly outperform the direct encodings as regularity increases in three problem domains. We also show that the types of regularities HyperNEAT produces can be biased, allowing domain knowledge and preferences to be injected into the search. Finally, we examine the downside of a bias toward regularity. Even when a solution is mainly regular, some irregularity may be needed to perfect its functionality. This insight is illustrated by a new algorithm called HybrID that hybridizes indirect and direct encodings, which matched HyperNEAT’s performance on regular problems yet outperformed it on problems with some irregularity. HybrID’s ability to improve upon the performance of HyperNEAT raises the question of whether indirect encodings may ultimately excel not as stand-alone algorithms, but by being hybridized with a further process of refinement, wherein the indirect encoding produces patterns that exploit problem regu-.



    Upload a copy of this work     Papers currently archived: 94,549

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.


Added to PP

87 (#193,167)

6 months
5 (#880,810)

Historical graph of downloads
How can I increase my downloads?