An anytime algorithm for causal inference


The Fast Casual Inference (FCI) algorithm searches for features common to observationally equivalent sets of causal directed acyclic graphs. It is correct in the large sample limit with probability one even if there is a possibility of hidden variables and selection bias. In the worst case, the number of conditional independence tests performed by the algorithm grows exponentially with the number of variables in the data set. This affects both the speed of the algorithm and the accuracy of the algorithm on small samples, because tests of independence conditional on large numbers of variables have very low power. In this paper, I prove that the FCI algorithm can be interrupted at any stage and asked for output. The output from the interrupted algorithm is still correct with probability one in the large sample limit, although possibly less informative (in the sense that it answers “Can’t tell” for a larger number of questions) than if the FCI algorithm had been allowed to continue uninterrupted.



    Upload a copy of this work     Papers currently archived: 92,150

External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.


Added to PP

25 (#635,157)

6 months
1 (#1,475,085)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Peter Spirtes
Carnegie Mellon University

References found in this work

No references found.

Add more references