The tree property at and

Journal of Symbolic Logic 83 (2):669-682 (2018)
  Copy   BIBTEX

Abstract

This article has no associated abstract. (fix it)

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 92,991

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Fragility and indestructibility of the tree property.Spencer Unger - 2012 - Archive for Mathematical Logic 51 (5-6):635-645.
Destructibility of the tree property at אω+1.Yair Hayut & Menachem Magidor - forthcoming - Journal of Symbolic Logic:1-10.
REVIEWS-Three papers on the tree property.Arthur W. Apter - 2001 - Bulletin of Symbolic Logic 7 (2):28-168.
The tree property up to אω+1.Itay Neeman - 2014 - Journal of Symbolic Logic 79 (2):429-459.
The tree property and the continuum function below.Radek Honzik & Šárka Stejskalová - 2018 - Mathematical Logic Quarterly 64 (1-2):89-102.
Indestructibility of the tree property.Radek Honzik & Šárka Stejskalová - 2020 - Journal of Symbolic Logic 85 (1):467-485.
Weak covering and the tree property.Ralf-Dieter Schindler - 1999 - Archive for Mathematical Logic 38 (8):515-520.
The strong tree property and the failure of SCH.Jin Du - 2019 - Archive for Mathematical Logic 58 (7-8):867-875.

Analytics

Added to PP
2018-08-02

Downloads
19 (#824,104)

6 months
6 (#588,321)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

The strong tree property and the failure of SCH.Jin Du - 2019 - Archive for Mathematical Logic 58 (7-8):867-875.

Add more citations

References found in this work

The tree property at successors of singular cardinals.Menachem Magidor & Saharon Shelah - 1996 - Archive for Mathematical Logic 35 (5-6):385-404.
Aronszajn trees and failure of the singular cardinal hypothesis.Itay Neeman - 2009 - Journal of Mathematical Logic 9 (1):139-157.
Aronszajn trees and the successors of a singular cardinal.Spencer Unger - 2013 - Archive for Mathematical Logic 52 (5-6):483-496.
Fragility and indestructibility II.Spencer Unger - 2015 - Annals of Pure and Applied Logic 166 (11):1110-1122.
The tree property below ℵ ω ⋅ 2.Spencer Unger - 2016 - Annals of Pure and Applied Logic 167 (3):247-261.

View all 6 references / Add more references