Archive for Mathematical Logic 38 (2):103-122 (1999)
Abstract |
For X a separable metric space and $\alpha$ an infinite ordinal, consider the following three games of length $\alpha$ : In $G^{\alpha}_1$ ONE chooses in inning $\gamma$ an $\omega$ –cover $O_{\gamma}$ of X; TWO responds with a $T_{\gamma}\in O_{\gamma}$ . TWO wins if $\{T_{\gamma}:\gamma<\alpha\}$ is an $\omega$ –cover of X; ONE wins otherwise. In $G^{\alpha}_2$ ONE chooses in inning $\gamma$ a subset $O_{\gamma}$ of ${\sf C}_p(X)$ which has the zero function $\underline{0}$ in its closure, and TWO responds with a function $T_{\gamma}\in O_{\gamma}$ . TWO wins if $\underline{0}$ is in the closure of $\{T_{\gamma}:\gamma<\alpha\}$ ; otherwise, ONE wins. In $G^{\alpha}_3$ ONE chooses in inning $\gamma$ a dense subset $O_{\gamma}$ of ${\sf C}_p(X)$ , and TWO responds with a $T_{\gamma}\in O_{\gamma}$ . TWO wins if $\{T_{\gamma}:\gamma<\alpha\}$ is dense in ${\sf C}_p(X)$ ; otherwise, ONE wins. After a brief survey we prove: 1. If $\alpha$ is minimal such that TWO has a winning strategy in $G^{\alpha}_1$ , then $\alpha$ is additively indecomposable (Theorem 4) 2. For $\alpha$ countable and minimal such that TWO has a winning strategy in $G^{\alpha}_1$ on X, the following statements are equivalent (Theorem 9): a) TWO has a winning strategy in $G^{\alpha}_2$ on ${\sf C}_p(X)$ . b) TWO has a winning strategy in $G^{\alpha}_3$ on ${\sf C}_p(X)$ . 3. The Continuum Hypothesis implies that there is an uncountable set X of real numbers such that TWO has a winning strategy in $G^{\omega^2}_1$ on X (Theorem 10)
|
Keywords | Key words:infinite game, $\omega$–concentrated, point-open type, $\omega$–type, strong-fan type, density type |
Categories | (categorize this paper) |
DOI | 10.1007/s001530050117 |
Options |
![]() ![]() ![]() ![]() |
Download options
References found in this work BETA
No references found.
Citations of this work BETA
Additivity Properties of Topological Diagonalizations.Tomek Bartoszynski, Saharon Shelah & Boaz Tsaban - 2003 - Journal of Symbolic Logic 68 (4):1254-1260.
On Some Questions About Selective Separability.Liljana Babinkostova - 2009 - Mathematical Logic Quarterly 55 (5):539-541.
Similar books and articles
An Ordinal Partition Avoiding Pentagrams.Jean A. Larson - 2000 - Journal of Symbolic Logic 65 (3):969-978.
Bounds for the Closure Ordinals of Essentially Monotonic Increasing Functions.Andreas Weiermann - 1993 - Journal of Symbolic Logic 58 (2):664-671.
Power-Collapsing Games.Miloš S. Kurilić & Boris Šobot - 2008 - Journal of Symbolic Logic 73 (4):1433-1457.
Z. Bonias: '[Epsilon, Accent][Nu][Alpha] [Alpha][Gamma][Rho][Omicron][Tau][Iota][Kappa][Omicron, Accent] [Iota][Epsilon][Rho][Omicron, Accent] [Sigma][Tau][Iota][Final Small Sigma] A[Iota][Gamma][Iota][Epsilon, Accent][Final Small Sigma] [Lambda][Alpha][Kappa][Omega][Nu][Iota, Accent][Alpha][Final Small Sigma] ( [Delta]Η[Mu][Omicron][Sigma][Iota][Epsilon][Upsilon, Accent][Mu][Alpha][Tau][Alpha] [Tau][Omicron][Upsilon] [Alpha][Rho][Chi][Alpha][Iota][Omicron][Lambda][Omicron][Gamma][Iota][Kappa][Omicron][Upsilon, Accent] [Delta][Epsilon][Lambda][Tau][Iota, Accent][Omicron][Upsilon] , 62). Pp. 230, 67 Pls. Athens: Ypourgeio Politismou, 1998. Price: Drs 10,000. ISBN: 960-214-190-5 (ISSN: 1108-1244). [REVIEW]Graham Shipley - 2000 - The Classical Review 50 (02):663-.
Argos and the Argolid A. Pariente, G. Touchais (Edd.); 'A[Rho][Gamma][Omicron][Final Small Sigma] [Kappa][Alpha][Iota, Accent] a[Rho][Gamma][Omicron][Lambda][Delta][Alpha]: Τo[Pi]o[Gamma][Rho][Alpha][Phi][Iota, Accent][Alpha] [Kappa][Alpha][Iota] [Pi]o[Lambda][Epsilon]o[Delta]o[Mu][Iota, Accent][Alpha] /Argos Et L'Argolide: Topographie Et Histoire. ( [Pi][Rho][Alpha][Kappa]Τ[Iota][Kappa][Alpha, Accent] [Delta][Iota][Epsilon][Theta][Nu][Omicron][Upsilon, Accent][Final Small Sigma] [Sigma][Upsilon][Nu][Epsilon][Delta][Rho][Iota, Accent][Omicron][Upsilon] /Actes de la Table Ronde Internationale, a[Theta][Eta, Accent][Nu][Alpha]–'a[Rho][Gamma][Omicron][Final Small Sigma] 28/4–1/5/1990 Athènes–Argos). (E[Lambda][Lambda][Eta][Nu][Omicron][Gamma][Alpha][Lambda][Lambda][Iota][Kappa][Epsilon, Accent][Final Small Sigma] [Epsilon, Accent][Rho][Epsilon][Upsilon][Nu][Epsilon][Final Small Sigma] /Recherches Franco-Helléniques, 3.) Pp. XIV + 507, Text Figs, 14 Pls, 9 Overlays, 2 Foldout Plans. Nafpli. [REVIEW]Graham Shipley - 2000 - The Classical Review 50 (02):550-.
A Thirty-Five-Year Odyssey of an Alpha Omega Alpha Chapter Councilor.W. H. Frishman - 2013 - The Pharos of Alpha Omega Alpha-Honor Medical Society. Alpha Omega Alpha 76 (2):4 - 6.
Alpha Omega Alpha and Health Policy.E. D. Harris Jr - 2009 - The Pharos of Alpha Omega Alpha-Honor Medical Society. Alpha Omega Alpha 72 (4):1.
New Chapters for Alpha Omega Alpha.R. L. Byyny - 2013 - The Pharos of Alpha Omega Alpha-Honor Medical Society. Alpha Omega Alpha 76 (3):2 - 7.
Working Memory and Neural Oscillations: Alpha–Gamma Versus Theta–Gamma Codes for Distinct WM Information?Frédéric Roux & Peter J. Uhlhaas - 2014 - Trends in Cognitive Sciences 18 (1):16-25.
A Omega and Professionalism in Medicine-Continued.R. L. Byyny - 2013 - The Pharos of Alpha Omega Alpha-Honor Medical Society. Alpha Omega Alpha 76 (2):2 - 3.
Ethical Considerations for NIH Funded Highly Transmissible H5N1.M. Salhanick - 2013 - The Pharos of Alpha Omega Alpha-Honor Medical Society. Alpha Omega Alpha 76 (1):6.
The Heart of Oz. L. Frank Baum's Cardiac Disease.R. S. Pinals & H. Smulyan - 2012 - The Pharos of Alpha Omega Alpha-Honor Medical Society. Alpha Omega Alpha 75 (3):20.
A Fatal Zest for Living. The All Too Brief Life of Mario Lanza.A. Cesari & P. A. Mackowiak - 2010 - The Pharos of Alpha Omega Alpha-Honor Medical Society. Alpha Omega Alpha 73 (1):4.
The Crown of a Good Name. W. Barry Wood, Jr., and Daniel Nathans.I. Kushner - 2013 - The Pharos of Alpha Omega Alpha-Honor Medical Society. Alpha Omega Alpha 76 (3):8.
Analytics
Added to PP index
2013-11-23
Total views
10 ( #903,240 of 2,518,735 )
Recent downloads (6 months)
1 ( #408,070 of 2,518,735 )
2013-11-23
Total views
10 ( #903,240 of 2,518,735 )
Recent downloads (6 months)
1 ( #408,070 of 2,518,735 )
How can I increase my downloads?
Downloads