Representing Von neumann–morgenstern games in the situation calculus

Sequential von Neumann–Morgernstern (VM) games are a very general formalism for representing multi-agent interactions and planning problems in a variety of types of environments. We show that sequential VM games with countably many actions and continuous utility functions have a sound and complete axiomatization in the situation calculus. This axiomatization allows us to represent game-theoretic reasoning and solution concepts such as Nash equilibrium. We discuss the application of various concepts from VM game theory to the theory of planning and multi-agent interactions, such as representing concurrent actions and using the Baire topology to define continuous payoff functions.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 72,541
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles


Added to PP index

Total views

Recent downloads (6 months)

How can I increase my downloads?


Sorry, there are not enough data points to plot this chart.

My notes