Representing Von neumann–morgenstern games in the situation calculus

Abstract

Sequential von Neumann–Morgernstern (VM) games are a very general formalism for representing multi-agent interactions and planning problems in a variety of types of environments. We show that sequential VM games with countably many actions and continuous utility functions have a sound and complete axiomatization in the situation calculus. This axiomatization allows us to represent game-theoretic reasoning and solution concepts such as Nash equilibrium. We discuss the application of various concepts from VM game theory to the theory of planning and multi-agent interactions, such as representing concurrent actions and using the Baire topology to define continuous payoff functions.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,386

External links

  • This entry has no external links. Add one.
Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles

Analytics

Added to PP
2009-01-28

Downloads
0

6 months
0

Historical graph of downloads

Sorry, there are not enough data points to plot this chart.
How can I increase my downloads?

Author's Profile

Citations of this work

No citations found.

Add more citations

References found in this work

No references found.

Add more references