Granularity Analysis for Mathematical Proofs

Topics in Cognitive Science 5 (2):251-269 (2013)
  Copy   BIBTEX

Abstract

Mathematical proofs generally allow for various levels of detail and conciseness, such that they can be adapted for a particular audience or purpose. Using automated reasoning approaches for teaching proof construction in mathematics presupposes that the step size of proofs in such a system is appropriate within the teaching context. This work proposes a framework that supports the granularity analysis of mathematical proofs, to be used in the automated assessment of students' proof attempts and for the presentation of hints and solutions at a suitable pace. Models for granularity are represented by classifiers, which can be generated by hand or inferred from a corpus of sample judgments via machine-learning techniques. This latter procedure is studied by modeling granularity judgments from four experts. The results provide support for the granularity of assertion-level proofs but also illustrate a degree of subjectivity in assessing step size

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,386

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Analytics

Added to PP
2013-03-05

Downloads
83 (#198,631)

6 months
8 (#342,364)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

No citations found.

Add more citations