Bulletin of the Section of Logic 30 (3):139-146 (2001)

José M. Méndez
Universidad de Salamanca
Francisco Salto
Universidad de León
Gemma Robles
Universidad de León
LCo with the Converse Ackermann Property is defined as the result of restricting Contraction in LC. Intuitionistic and Superintuitionistic Negation is shown to be compatible with the CAP.
Keywords Converse Ackermann Property  Relevance Logics  Contractionless logics  Substructural Logics
Categories (categorize this paper)
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy

Upload a copy of this paper     Check publisher's policy     Papers currently archived: 70,130
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

No references found.

Add more references

Citations of this work BETA

Two Versions of Minimal Intuitionism with the CAP. A Note.Gemma Robles & José M. Méndez - 2005 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 20 (2):183-190.

Add more citations

Similar books and articles

A Routley-Meyer Semantics for Converse Ackermann Property.José M. Méndez - 1987 - Journal of Philosophical Logic 16 (1):65 - 76.
A Routley-Meyer Semantics For Converse Ackermann Property.Jose A. Mendez - 1987 - Journal of Philosophical Logic 16 (February):65-76.
Systems with the Converse Ackermann Property.José Manuel Méndez Rodríguez - 1985 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 1 (1):253-258.
Kernel Contraction.Sven Ove Hansson - 1994 - Journal of Symbolic Logic 59 (3):845-859.
Formulas for Which Contraction is Admissible.A. Avron - 1998 - Logic Journal of the IGPL 6 (1):43-48.
The Possibility of Unicorns and Modal Logic.Lee Walters - 2014 - Analytic Philosophy 55 (2):295-305.


Added to PP index

Total views
23 ( #492,788 of 2,506,491 )

Recent downloads (6 months)
1 ( #416,791 of 2,506,491 )

How can I increase my downloads?


My notes