# The development of arithmetic in Frege's Grundgesetze der Arithmetik

Journal of Symbolic Logic 58 (2):579-601 (1993)

# Abstract

Frege's development of the theory of arithmetic in his Grundgesetze der Arithmetik has long been ignored, since the formal theory of the Grundgesetze is inconsistent. His derivations of the axioms of arithmetic from what is known as Hume's Principle do not, however, depend upon that axiom of the system--Axiom V--which is responsible for the inconsistency. On the contrary, Frege's proofs constitute a derivation of axioms for arithmetic from Hume's Principle, in (axiomatic) second-order logic. Moreover, though Frege does prove each of the now standard Dedekind-Peano axioms, his proofs are devoted primarily to the derivation of his own axioms for arithmetic, which are somewhat different (though of course equivalent). These axioms, which may be yet more intuitive than the Dedekind-Peano axioms, may be taken to be "The Basic Laws of Cardinal Number", as Frege understood them. Though the axioms of arithmetic have been known to be derivable from Hume's Principle for about ten years now, it has not been widely recognized that Frege himself showed them so to be; nor has it been known that Frege made use of any axiomatization for arithmetic whatsoever. Grundgesetze is thus a work of much greater significance than has often been thought. First, Frege's use of the inconsistent Axiom V may invalidate certain of his claims regarding the philosophical significance of his work (viz., the establishment of Logicism), but it should not be allowed to obscure his mathematical accomplishments and his contribution to our understanding of arithmetic. Second, Frege's knowledge that arithmetic is derivable from Hume's Principle raises important sorts of questions about his philosophy of arithmetic. For example, "Why did Frege not simply abandon Axiom V and take Hume's Principle as an axiom?"

## PhilArchive

Upload a copy of this work     Papers currently archived: 79,934

Setup an account with your affiliations in order to access resources via your University's proxy server

# Similar books and articles

Frege on knowing the foundation.Tyler Burge - 1998 - Mind 107 (426):305-347.
Finitude and Hume's Principle.Richard G. Heck Jr - 1997 - Journal of Philosophical Logic 26 (6):589 - 617.
Predicative fragments of Frege arithmetic.Øystein Linnebo - 2004 - Bulletin of Symbolic Logic 10 (2):153-174.

2009-01-28

126 (#108,026)

6 months
5 (#166,396)

# Author's Profile

Richard Kimberly Heck
Brown University

# Citations of this work

Frege, Kant, and the logic in logicism.John MacFarlane - 2002 - Philosophical Review 111 (1):25-65.
Abstract objects.Gideon Rosen - 2008 - Stanford Encyclopedia of Philosophy.
Speaking with Shadows: A Study of Neo‐Logicism.Fraser MacBride - 2003 - British Journal for the Philosophy of Science 54 (1):103-163.

# References found in this work

Frege’s Conception of Numbers as Objects.Crispin Wright - 1983 - Critical Philosophy 1 (1):97.
Frege's theory of numbers.Charles Parsons - 1965 - In M. Black (ed.), Philosophy in America. Cornell University Press. pp. 180-203.
Frege: Philosophy of Mathematics. [REVIEW]Charles Parsons - 1996 - Philosophical Review 105 (4):540.