Complexity 2022:1-14 (2022)

Abstract
During the COVID-19 epidemic, draconian countermeasures forbidding nonessential human activities have been adopted in several countries worldwide, providing an unprecedented setup for testing and quantifying the current impact of humankind on climate and for driving potential sustainability policies in the postpandemic era from a perspective of complex systems. In this study, we consider heterogeneous sources of environmental and human activity observables, considered as components of a complex socioenvironmental system, and apply information theory, network science, and Bayesian inference to analyze their structural relations and nonlinear dynamics between January 2019 and August 2020 in northern Italy, i.e., before, during, and after the national lockdown. The topological structure of a complex system strongly impacts its collective behavior; therefore, mapping this structure is essential to fully understand the functions of the system as a whole and its fragility to unexpected disruptions or shocks. To this aim, we unravel the causal relationships between the 16 environmental conditions and human activity variables, mapping the backbone of the complex interplay between intervening physical observables—such as NO2 emissions, energy consumption, intervening climate variables, and different flavors of human mobility flows—to a causal network model. To identify a tipping point during the period of observation, denoting the presence of a regime shift between distinct network states, we introduce a novel information-theoretic method based on statistical divergence widely used in statistical physics. We find that despite a measurable decrease in NO2 concentration, due to an overall decrease in human activities, locking down a region as a climate change mitigation is an insufficient remedy to reduce emissions. Our results provide a functional characterization of socioenvironmental interdependent systems, and our analytical framework can be used, more generally, to characterize environmental changes and their interdependencies using statistical physics.
Keywords No keywords specified (fix it)
Categories (categorize this paper)
DOI 10.1155/2022/5677568
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 72,607
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Lockdown, Public Good and Equality During COVID-19.Lucy Frith - 2020 - Journal of Medical Ethics 46 (11):713-714.

Analytics

Added to PP index
2022-05-02

Total views
0

Recent downloads (6 months)
0

How can I increase my downloads?

Downloads

Sorry, there are not enough data points to plot this chart.

My notes