Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects

Abstract

Gauss-Hermite quadrature is often used to evaluate and maximize the likelihood for random component probit models. Unfortunately, the estimates are biased for large cluster sizes and/or intraclass correlations. We show that adaptive quadrature largely overcomes these problems. We then extend the adaptive quadrature approach to general random coefficient models with limited and discrete dependent variables. The models can include several nested random effects representing unobserved heterogeneity at different levels of a hierarchical dataset. The required multivariate integrals are evaluated efficiently using spherical quadrature rules. Simulations show that adaptive quadrature performs well in a wide range of situations. © 2004 Published by Elsevier B.V.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,139

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles

Analytics

Added to PP
2017-03-18

Downloads
5 (#1,432,111)

6 months
1 (#1,346,405)

Historical graph of downloads
How can I increase my downloads?