Additive representation of separable preferences over infinite products

Theory and Decision 77 (1):31-83 (2014)
  Copy   BIBTEX

Abstract

Let X\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{X }$$\end{document} be a set of outcomes, and let I\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{I }$$\end{document} be an infinite indexing set. This paper shows that any separable, permutation-invariant preference order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$$$\end{document} on XI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{X }^\mathcal{I }$$\end{document} admits an additive representation. That is: there exists a linearly ordered abelian group R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R }$$\end{document} and a ‘utility function’ u:X⟶R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u:\mathcal{X }{{\longrightarrow }}\mathcal{R }$$\end{document} such that, for any x,y∈XI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{x},\mathbf{y}\in \mathcal{X }^\mathcal{I }$$\end{document} which differ in only finitely many coordinates, we have x≽y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{x}\succcurlyeq \mathbf{y}$$\end{document} if and only if ∑i∈Iu-u≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{i\in \mathcal{I }} \left[u-u\right]\ge 0$$\end{document}. Importantly, and unlike almost all previous work on additive representations, this result does not require any Archimedean or continuity condition. If \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$$$\end{document} also satisfies a weak continuity condition, then the paper shows that, for anyx,y∈XI\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{x},\mathbf{y}\in \mathcal{X }^\mathcal{I }$$\end{document}, we have x≽y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf{x}\succcurlyeq \mathbf{y}$$\end{document} if and only if ∗∑i∈Iu≥∗∑i∈Iu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^*\!\sum _{i\in \mathcal{I }} u\ge {}^*\!\sum _{i\in \mathcal{I }}u$$\end{document}. Here, ∗∑i∈Iu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^*\!\sum _{i\in \mathcal{I }} u$$\end{document} represents a nonstandard sum, taking values in a linearly ordered abelian group ∗R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}^*\!\mathcal{R }$$\end{document}, which is an ultrapower extension of R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{R }$$\end{document}. The paper also discusses several applications of these results, including infinite-horizon intertemporal choice, choice under uncertainty, variable-population social choice and games with infinite strategy spaces.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 103,567

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.
Isomorphic and strongly connected components.Miloš S. Kurilić - 2015 - Archive for Mathematical Logic 54 (1-2):35-48.
A remark on hereditarily nonparadoxical sets.Péter Komjáth - 2016 - Archive for Mathematical Logic 55 (1-2):165-175.

Analytics

Added to PP
2013-12-01

Downloads
174 (#140,881)

6 months
10 (#314,568)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Marcus Pivato
University of Paris 1 Panthéon-Sorbonne

Citations of this work

Infinite Aggregation and Risk.Hayden Wilkinson - 2023 - Australasian Journal of Philosophy 101 (2):340-359.
Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.
Infinitesimal Probabilities.Sylvia Wenmackers - 2019 - In Richard Pettigrew & Jonathan Weisberg, The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 199-265.

View all 16 citations / Add more citations

References found in this work

A Theory of Justice: Revised Edition.John Rawls - 1999 - Harvard University Press.
Reasons and Persons.Derek Parfit - 1984 - Oxford, GB: Oxford University Press.
The Foundations of Statistics.Leonard Savage - 1954 - Wiley Publications in Statistics.
Reasons and Persons.Joseph Margolis - 1984 - Philosophy and Phenomenological Research 47 (2):311-327.
The methods of ethics.Henry Sidgwick - 1907 - Bristol, U.K.: Thoemmes Press. Edited by Emily Elizabeth Constance Jones.

View all 44 references / Add more references