Time and Fermions: General Covariance vs. Ockham's Razor for Spinors

Abstract

It is a commonplace in the foundations of physics, attributed to Kretschmann, that any local physical theory can be represented using arbitrary coordinates, simply by using tensor calculus. On the other hand, the physics and mathematics literature often claims that spinors \emph{as such} cannot be represented in coordinates in a curved space-time. These commonplaces are inconsistent. What general covariance means for theories with fermions is thus unclear. In fact both commonplaces are wrong. Though it is not widely known, Ogievetsky and Polubarinov constructed spinors in coordinates in 1965, enhancing the unity of physics and helping to spawn particle physicists' concept of nonlinear group representations. Roughly and locally, OP spinors resemble the orthonormal basis or tetrad formalism in the symmetric gauge, but they are conceptually self-sufficient and more economical. The typical tetrad formalism is thus de-Ockhamized, with six extra field components and six compensating gauge symmetries to cancel them out. As developed nonperturbatively by Bilyalov, OP spinors admit any coordinates at a point, but `time' must be listed first; `time' is defined in terms of an eigenvalue problem involving the metric components and the matrix $diag$, the product of which must have no negative eigenvalues. Thus even formal general covariance requires reconsideration; the atlas of admissible coordinate charts should be sensitive to the types and \emph{values} of the fields involved. Apart from coordinate order and the usual spinorial two-valuedness, Ogievetsky-Polubarinov spinors form, with the metric, a nonlinear geometric object. Important results on Lie and covariant differentiation are recalled and applied. The rather mild consequences of the coordinate order restriction are explored in two examples: the question of the conventionality of simultaneity in Special Relativity, and the Schwarzschild solution in General Relativity.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,386

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Similar books and articles

The nontriviality of trivial general covariance: How electrons restrict ‘time’ coordinates, spinors fit into tensor calculus, and of a tetrad is surplus structure.J. Brian Pitts - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (1):1-24.
The nontriviality of trivial general covariance: How electrons restrict 'time' coordinates, spinors (almost) fit into tensor calculus, and of a tetrad is surplus structure.J. Brian Pitts - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (1):1-24.
Indiscernibles, general covariance, and other symmetries.Simon Saunders - 2001 - In Abhay Ashtekar, Jürgen Renn, Don Howard, Abner Shimony & S. Sarkar (eds.), Revisiting the Foundations of Relativistic Physics. Festschrift in Honour of John Stachel. Kluwer Academic Publishers.
General covariance, gauge theories and the kretschmann objection.John D. Norton - 2001 - In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. Cambridge University Press. pp. 110--123.
Spinors and torsion in general relativity.Roger Penrose - 1983 - Foundations of Physics 13 (3):325-339.
Physical dimensions and covariance.E. J. Post - 1982 - Foundations of Physics 12 (2):169-195.
Clifford algebras and Hestenes spinors.Pertti Lounesto - 1993 - Foundations of Physics 23 (9):1203-1237.
Can one have a universal time in general relativity?Nathan Rosen - 1991 - Foundations of Physics 21 (4):459-472.
Geometric significance of the spinor Lie derivative. I.V. Jhangiani - 1978 - Foundations of Physics 8 (5-6):445-462.
The Geometrical Meaning of Time.Asher Yahalom - 2008 - Foundations of Physics 38 (6):489-497.

Analytics

Added to PP
2015-09-07

Downloads
49 (#317,389)

6 months
8 (#342,364)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

J. Brian Pitts
University of Lincoln

References found in this work

The nontriviality of trivial general covariance: How electrons restrict ‘time’ coordinates, spinors fit into tensor calculus, and of a tetrad is surplus structure.J. Brian Pitts - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (1):1-24.
Absolute objects and counterexamples: Jones–Geroch dust, Torretti constant curvature, tetrad-spinor, and scalar density.J. Brian Pitts - 2006 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 37 (2):347-371.
The nontriviality of trivial general covariance: How electrons restrict 'time' coordinates, spinors (almost) fit into tensor calculus, and of a tetrad is surplus structure.J. Brian Pitts - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (1):1-24.
The nontriviality of trivial general covariance: How electrons restrict ‘time’ coordinates, spinors fit into tensor calculus, and of a tetrad is surplus structure.J. Brian Pitts - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (1):1-24.

View all 6 references / Add more references