Aggregation of polyQ‐extended proteins is promoted by interaction with their natural coiled‐coil partners

Bioessays 35 (6):503-507 (2013)
  Copy   BIBTEX

Abstract

Polyglutamine (polyQ) diseases are genetically inherited neurodegenerative disorders. They are caused by mutations that result in polyQ expansions of particular proteins. Mutant proteins form intranuclear aggregates, induce cytotoxicity and cause neuronal cell death. Protein interaction data suggest that polyQ regions modulate interactions between coiled‐coil (CC) domains. In the case of the polyQ disease spinocerebellar ataxia type‐1 (SCA1), interacting proteins with CC domains further enhance aggregation and toxicity of mutant ataxin‐1 (ATXN1). Here, we suggest that CC partners interacting with the polyQ region of a mutant protein, increase its aggregation while partners that interact with a different region reduce the formation of aggregates. Computational analysis of genetic screens revealed that CC‐rich proteins are highly enriched among genes that enhance pathogenicity of polyQ proteins, supporting our hypothesis. We therefore suggest that blocking interactions between mutant polyQ proteins and their CC partners might constitute a promising preventive strategy against neurodegeneration.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,139

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Unique lipids and unique properties of retinal proteins.Kamon Sanada & Yoshitaka Fukada - 1995 - Behavioral and Brain Sciences 18 (3):486-487.
Arrow's theorem in judgment aggregation.Franz Dietrich & Christian List - 2007 - Social Choice and Welfare 29 (1):19-33.
Aggregation and numbers.Iwao Hirose - 2004 - Utilitas 16 (1):62-79.

Analytics

Added to PP
2013-11-23

Downloads
33 (#447,419)

6 months
4 (#573,918)

Historical graph of downloads
How can I increase my downloads?

References found in this work

No references found.

Add more references