Análisis Filosófico 28 (2):175-203 (2008)

Abstract
La consecuencia más difundida de la revolución en la geometría del siglo XIX es aquella que afirma que después de dichos cambios ya nada quedaría de la vieja noción de espacio como "forma de la intuición sensible", ni de la geometría como "condición trascendental" de la posibilidad de la experiencia. Este artículo se ocupa del intento de Rudolf Carnap por articular una concepción del espacio intuitivo que, al tiempo que se mantiene dentro del paradigma kantiano se hace eco de algunos resultados obtenidos en las ciencias formales, específicamente de la teoría de grupos en su aplicación a la geometría. Su concepción se encuentra antecedida por los esfuerzos de Helmholtz, Poincaré, Cassirer y Husserl. The most diffused consecuence of the revolution in the geometry of the XIX century is what claims that after this changes anything would remain of the old notion of space as "the form of the sensible intuition", neither of geometry like "transcendental condition" of the possibility of experience. This paper deal with the Rudolf Carnap's attempt to articulate a conception of the intuitve space that, at the time that it mantains within kantian paradigm, it echoes of some results obtained in the formal sciences, specifically of the theory of groups in its application to geometry. Its conception is preceded by the efforts of Helmholtz, Poincaré, Cassirer and Husserl
Keywords No keywords specified (fix it)
Categories (categorize this paper)
Options
Edit this record
Mark as duplicate
Export citation
Find it on Scholar
Request removal from index
Revision history

Download options

PhilArchive copy


Upload a copy of this paper     Check publisher's policy     Papers currently archived: 69,114
External links

Setup an account with your affiliations in order to access resources via your University's proxy server
Configure custom proxy (use this if your affiliation does not provide a proxy)
Through your library

References found in this work BETA

The Principles of Mathematics.Bertrand Russell - 1903 - Cambridge, England: Allen & Unwin.
The Principles of Mathematics.Bertrand Russell - 1903 - Revue de Métaphysique et de Morale 11 (4):11-12.
Mathematical Thought From Ancient to Modern Times.M. Kline - 1978 - British Journal for the Philosophy of Science 29 (1):68-87.
Philosophy of Geometry from Riemann to Poincaré.Roberto Torretti - 1978 - Revue de Métaphysique et de Morale 88 (4):565-571.

View all 7 references / Add more references

Citations of this work BETA

No citations found.

Add more citations

Similar books and articles

Carnap's Metrical Conventionalism Versus Differential Topology.Thomas Mormann - 2004 - Proc. 2004 Biennial Meeting of the PSA, vol. I, Contributed Papers 72 (5):814 - 825.
Hohfeld Relations and Spielraum for Action.Lars Lindahl - 2006 - Análisis Filosófico 26 (2):325-355.
Rudolf Carnap and the Legacy of Logical Empiricism.Richard Creath (ed.) - 2012 - Dordrecht, Netherland: Springer Verlag.
Rudolf Carnap's Analysis of `Truth': Reply.Rudolf Carnap - 1948 - Philosophy and Phenomenological Research 9 (2):300-304.
The Logical Syntax of Language.Rudolf Carnap - 1937 - London: K. Paul, Trench, Trubner & Co..
Carnap and Translational Indeterminacy.William H. Berge - 1995 - Synthese 105 (1):115 - 121.

Analytics

Added to PP index
2013-10-03

Total views
48 ( #234,109 of 2,499,265 )

Recent downloads (6 months)
3 ( #209,670 of 2,499,265 )

How can I increase my downloads?

Downloads

My notes