Connexive Variants of Modal Logics Over FDE

In Ofer Arieli & Anna Zamansky (eds.), Arnon Avron on Semantics and Proof Theory of Non-Classical Logics. Springer Verlag. pp. 295-318 (2021)
  Copy   BIBTEX


Various connexive FDE-based modal logics are studied. Some of these logics contain a conditional that is both connexive and strict, thereby highlighting that strictness and connexivity of a conditional do not exclude each other. In particular, the connexive modal logics cBK-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-}$$\end{document}, cKN4, scBK-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-}$$\end{document}, scKN4, cMBL, and scMBL are introduced semantically by means of classes of Kripke models. The logics cBK-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-}$$\end{document} and cKN4 are connexive variants of the FDE-based modal logics BK-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-}$$\end{document} and KN4 with a weak and a strong implication, respectively. The system cMBL is a connexive variant of the modal bilattice logic MBL. The latter is a modal extension of Arieli and Avron’s logic of logical bilattices and is characterized by a class of Kripke models with a four-valued accessibility relation. In the systems scBK-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-}$$\end{document}, scKN4, and scMBL, the conditional is both connexive and strict. Sound and complete tableau calculi for all these logics are presented and used to show that the entailment relations of the systems under consideration are decidable for finite premise set. Moreover, the logics cBK-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {cBK}^-$$\end{document} and cMBL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {cMBL}$$\end{document} are shown to be algebraizable. The algebraizability of cMBL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {cMBL}$$\end{document} is derived from proving cMBL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {cMBL}$$\end{document} to be definitionally equivalent to MBL\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbf {MBL}$$\end{document}. All connexive modal logics studied in this paper are decidable, paraconsistent, and inconsistent but non-trivial logics.



    Upload a copy of this work     Papers currently archived: 94,726

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Hard Provability Logics.Mojtaba Mojtahedi - 2021 - In Mojtaba Mojtahedi, Shahid Rahman & MohammadSaleh Zarepour (eds.), Mathematics, Logic, and their Philosophies: Essays in Honour of Mohammad Ardeshir. Springer. pp. 253-312.
Peter Fishburn’s analysis of ambiguity.Mark Shattuck & Carl Wagner - 2016 - Theory and Decision 81 (2):153-165.
Minimal elementary end extensions.James H. Schmerl - 2017 - Archive for Mathematical Logic 56 (5-6):541-553.


Added to PP

17 (#888,335)

6 months
6 (#736,944)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Heinrich Wansing
Ruhr-Universität Bochum

Citations of this work

Connexive logic.Heinrich Wansing - 2008 - Stanford Encyclopedia of Philosophy.

Add more citations

References found in this work

No references found.

Add more references