Abstract
It has been argued that dual process theories are not consistent with Oaksford and Chater’s probabilistic approach to human reasoning (Oaksford and Chater in Psychol Rev 101:608–631, 1994 , 2007 ; Oaksford et al. 2000 ), which has been characterised as a “single-level probabilistic treatment[s]” (Evans 2007 ). In this paper, it is argued that this characterisation conflates levels of computational explanation. The probabilistic approach is a computational level theory which is consistent with theories of general cognitive architecture that invoke a WM system and an LTM system. That is, it is a single function dual process theory which is consistent with dual process theories like Evans’ ( 2007 ) that use probability logic (Adams 1998 ) as an account of analytic processes. This approach contrasts with dual process theories which propose an analytic system that respects standard binary truth functional logic (Heit and Rotello in J Exp Psychol Learn 36:805–812, 2010 ; Klauer et al. in J Exp Psychol Learn 36:298–323, 2010 ; Rips in Psychol Sci 12:29–134, 2001 , 2002 ; Stanovich in Behav Brain Sci 23:645–726, 2000 , 2011 ). The problems noted for this latter approach by both Evans Psychol Bull 128:978–996, ( 2002 , 2007 ) and Oaksford and Chater (Mind Lang 6:1–38, 1991 , 1998 , 2007 ) due to the defeasibility of everyday reasoning are rehearsed. Oaksford and Chater’s ( 2010 ) dual systems implementation of their probabilistic approach is then outlined and its implications discussed. In particular, the nature of cognitive decoupling operations are discussed and a Panglossian probabilistic position developed that can explain both modal and non-modal responses and correlations with IQ in reasoning tasks. It is concluded that a single function probabilistic approach is as compatible with the evidence supporting a dual systems theory.