Einstein’s Investigations of Galilean Covariant Electrodynamics prior to 1905

Abstract

Einstein learned from the magnet and conductor thought experiments how to use field transformation laws to extend the covariance to Maxwell’s electrodynamics. If he persisted in his use of this device, he would have found that the theory cleaves into two Galilean covariant parts, each with different field transformation laws. The tension between the two parts reflects a failure not mentioned by Einstein: that the relativity of motion manifested by observables in the magnet and conductor thought experiment does not extend to all observables in electrodynamics. An examination of Ritz’s work shows that Einstein’s early view could not have coincided with Ritz’s on an emission theory of light, but only with that of a conveniently reconstructed Ritz. One Ritz-like emission theory, attributed by Pauli to Ritz, proves to be a natural extension of the Galilean covariant part of Maxwell’s theory that happens also to accommodate the magnet and conductor thought experiment. Einstein's famous chasing a light beam thought experiment fails as an objection to an ether-based, electrodynamical theory of light. However it would allow Einstein to formulate his general objections to all emission theories of light in a very sharp form. Einstein found two well known experimental results of 18th and19th century optics compelling (Fizeau’s experiment, stellar aberration), while the accomplished Michelson-Morley experiment played no memorable role. I suggest they owe their importance to their providing a direct experimental grounding for Lorentz’ local time, the precursor of Einstein’s relativity of simultaneity, and do it essentially independently of electrodynamical theory. I attribute Einstein’s success to his determination to implement a principle of relativity in electrodynamics, but I urge that we not invest this stubbornness with any mystical prescience.

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 91,322

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

  • Only published works are available at libraries.

Analytics

Added to PP
2009-01-28

Downloads
169 (#111,055)

6 months
17 (#142,297)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

John D. Norton
University of Pittsburgh

Citations of this work

Drawing the line between kinematics and dynamics in special relativity.Michel Janssen - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (1):26-52.
Drawing the line between kinematics and dynamics in special relativity.Michel Janssen - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (1):26-52.
Thought Experiments: Determining Their Meaning.Igal Galili - 2009 - Science & Education 18 (1):1-23.

View all 9 citations / Add more citations

References found in this work

Autobiographical Notes.Max Black, Albert Einstein & Paul Arthur Schilpp - 1949 - Journal of Symbolic Logic 15 (2):157.
Productive Thinking.Max Wertheimer - 1946 - Philosophical Review 55 (3):298.
Einstein's theory of relativity.Max Born - 1924 - New York,: Dover Publications. Edited by Henry Herman Leopold Adolf Brose.

View all 9 references / Add more references