Equiconsistencies at subcompact cardinals

Archive for Mathematical Logic 55 (1-2):207-238 (2016)
  Copy   BIBTEX


We present equiconsistency results at the level of subcompact cardinals. Assuming SBHδ, a special case of the Strategic Branches Hypothesis, we prove that if δ is a Woodin cardinal and both □ and □δ fail, then δ is subcompact in a class inner model. If in addition □ fails, we prove that δ is Π12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi_1^2}$$\end{document} subcompact in a class inner model. These results are optimal, and lead to equiconsistencies. As a corollary we also see that assuming the existence of a Woodin cardinal δ so that SBHδ holds, the Proper Forcing Axiom implies the existence of a class inner model with a Π12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi_1^2}$$\end{document} subcompact cardinal. Our methods generalize to higher levels of the large cardinal hierarchy, that involve long extenders, and large cardinal axioms up to δ is δ+ supercompact for all n < ω. We state some results at this level, and indicate how they are proved.



    Upload a copy of this work     Papers currently archived: 91,349

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

Some applications of short core models.Peter Koepke - 1988 - Annals of Pure and Applied Logic 37 (2):179-204.
Inner models in the region of a Woodin limit of Woodin cardinals.Itay Neeman - 2002 - Annals of Pure and Applied Logic 116 (1-3):67-155.
Hierarchies of forcing axioms I.Itay Neeman & Ernest Schimmerling - 2008 - Journal of Symbolic Logic 73 (1):343-362.
Gap forcing: Generalizing the lévy-Solovay theorem.Joel David Hamkins - 1999 - Bulletin of Symbolic Logic 5 (2):264-272.
On extendible cardinals and the GCH.Konstantinos Tsaprounis - 2013 - Archive for Mathematical Logic 52 (5-6):593-602.
Elementary chains and C (n)-cardinals.Konstantinos Tsaprounis - 2014 - Archive for Mathematical Logic 53 (1-2):89-118.
A Cardinal Pattern Inspired by AD.Arthur W. Apter - 1996 - Mathematical Logic Quarterly 42 (1):211-218.
Proper forcing and l(ℝ).Itay Neeman & Jindřich Zapletal - 2001 - Journal of Symbolic Logic 66 (2):801-810.
On measurable limits of compact cardinals.Arthur W. Apter - 1999 - Journal of Symbolic Logic 64 (4):1675-1688.
C(n)-cardinals.Joan Bagaria - 2012 - Archive for Mathematical Logic 51 (3-4):213-240.
Strong Cardinals and Sets of Reals in Lω1.Ralf-Dieter Schindler - 1999 - Mathematical Logic Quarterly 45 (3):361-369.
Making all cardinals almost Ramsey.Arthur W. Apter & Peter Koepke - 2008 - Archive for Mathematical Logic 47 (7-8):769-783.


Added to PP

16 (#880,136)

6 months
8 (#352,434)

Historical graph of downloads
How can I increase my downloads?

Author's Profile

Jack Steel
University of Edinburgh

Citations of this work

Knaster and friends II: The C-sequence number.Chris Lambie-Hanson & Assaf Rinot - 2020 - Journal of Mathematical Logic 21 (1):2150002.
The linearity of the Mitchell order.Gabriel Goldberg - 2018 - Journal of Mathematical Logic 18 (1):1850005.
The comparison lemma.John R. Steel - forthcoming - Annals of Pure and Applied Logic.
Subcompact Cardinals, Type Omission, and Ladder Systems.Yair Hayut & Menachem Magidor - 2022 - Journal of Symbolic Logic 87 (3):1111-1129.

Add more citations

References found in this work

Suitable extender models I.W. Hugh Woodin - 2010 - Journal of Mathematical Logic 10 (1):101-339.
Suitable extender models II: Beyond ω-huge.W. Hugh Woodin - 2011 - Journal of Mathematical Logic 11 (2):115-436.
Square in core models.Ernest Schimmerling & Martin Zeman - 2001 - Bulletin of Symbolic Logic 7 (3):305-314.
Characterization of □κin core models.Ernest Schimmerling & Martin Zeman - 2004 - Journal of Mathematical Logic 4 (01):1-72.
Iteration Trees.D. A. Martin & J. R. Steel - 2002 - Bulletin of Symbolic Logic 8 (4):545-546.

View all 12 references / Add more references