What the łukasiewicz axioms mean

Journal of Symbolic Logic 85 (3):906-917 (2020)
  Copy   BIBTEX

Abstract

Let $\to $ be a continuous $\protect \operatorname {\mathrm {[0,1]}}$ -valued function defined on the unit square $\protect \operatorname {\mathrm {[0,1]}}^2$, having the following properties: $x\to = y\to $ and $x\to y=1 $ iff $x\leq y$. Let $\neg x=x\to 0$. Then the algebra $W=$ satisfies the time-honored Łukasiewicz axioms of his infinite-valued calculus. Let $x\to _{\text {\tiny \L }}y=\min $ and $\neg _{\text {\tiny \L }}x=x\to _{\text {\tiny \L }} 0 =1-x.$ Then there is precisely one isomorphism $\phi $ of W onto the standard Wajsberg algebra $W_{\text {\tiny \L }}= $. Thus $x\to y= \phi ^{-1}+\phi ))$.

Other Versions

No versions found

Links

PhilArchive



    Upload a copy of this work     Papers currently archived: 107,376

External links

Setup an account with your affiliations in order to access resources via your University's proxy server

Through your library

Similar books and articles

A Characterization of the free n-generated MV-algebra.Daniele Mundici - 2006 - Archive for Mathematical Logic 45 (2):239-247.
Assigning an isomorphism type to a hyperdegree.Howard Becker - 2020 - Journal of Symbolic Logic 85 (1):325-337.
A Topology For Logical Space.Boguslaw Wolniewicz - 1984 - Bulletin of the Section of Logic 13 (4):255-258.
Definability of types, and pairs of o-minimal structures.Anand Pillay - 1994 - Journal of Symbolic Logic 59 (4):1400-1409.
The geometry of weakly minimal types.Steven Buechler - 1985 - Journal of Symbolic Logic 50 (4):1044-1053.
Flat sets.Arthur D. Grainger - 1994 - Journal of Symbolic Logic 59 (3):1012-1021.
The Σ 2 1 theory of axioms of symmetry.Galen Weitkamp - 1989 - Journal of Symbolic Logic 54 (3):727-734.

Analytics

Added to PP
2020-10-31

Downloads
28 (#934,535)

6 months
8 (#656,084)

Historical graph of downloads
How can I increase my downloads?

Citations of this work

AF-algebras with lattice-ordered K0: Logic and computation.Daniele Mundici - 2023 - Annals of Pure and Applied Logic 174 (1):103182.

Add more citations

References found in this work

No references found.

Add more references